Asian Journal of Physics Vol. 30 Nos 10 & 11 (2021) 1573-1591

High accuracy surface roughness measurements utilizing evanescent illumination
F M Sciammarella, C A Sciammarella and L Lamberti


Abstract

This paper describes a novel optical methodology to characterize surface roughness of metallic and nonmetallic materials with sub-micron accuracy. The authors utilize optical evanescent fields to analyze the topography of these materials. The methodology initiated with the phenomenon of planar surface waves produced by surface plasmon polaritons. By direct experimental observations in 2009, the method was extended to ceramic surfaces in the micron and sub-micron range. Since ceramics are dielectric materials the plasmon polariton model cannot explain the observed phenomena. For almost a century, researchers analyzed surface electromagnetic waves observed in planar interfaces that involve metallic surfaces, or metallic surfaces and dielectric media. These studies resulted in the theory of surface-plasmon waves and surface-plasmon-polariton waves. Additional planar surface waves are the so called Dyakonov waves, Tamm waves, and Dyakonov–Tamm waves. These waves were originally theoretically derived by M I Dyakonov about 25 years ago and were observed for the first time in 2009. The Dyakonov–Tamm waves are generated in the interface of two dielectric materials with periodic internal structures. © Anita Publications. All rights reserved.
Keywords: Evanescent illumination, Surface electromagnetic waves, Surface topography of metallic and ceramic materials.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Tamm I, Selected Papers, Eds Bolotovsky B, Frenkel V Ya, (Springer, Berlin/Heidelberg, Germany, 1991.
  2. Dyakonov M I, New type of electromagnetic wave propagating at an interface, Zh Eksp Teor Fiz, 94(1988)119–123.
  3. Lakhtakia A, Polo J A, Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material, J Eur Opt Soc: Rapid Pub, 2(2007) Art 07021; doi. 10.2971/jeos.2007.07021.
  4. Agarwal K, Polo J A, Lakhtakia A, Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material, J Opt A: Pure Appl Opt, 11(2009) Art 074003; doi.org/10.1088/1464-4258/11/7/074003.
  5. Gao J, Lakhtakia A, Lei M, Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films, J Nanophoton, 5 (2011) Art. 051502; doi.org/10.1117/1.3543814.
  6. Faryad M, Lakhtakia A, Prism-coupled excitation of Dyakonov–Tamm waves, Opt Commun, 294(2013)192–197.
  7. Maab H, Faryad M, Lakhtakia A, Prism-coupled excitation of multiple Tamm waves, J Mod Opt, 60(2013)355–358.
  8. Pulsifier D P, Faryad M, Lakhtakia A, Observation of the Dyakonov-Tamm wave, Phys Rev Lett, 111(2013) Art 243902; org/10.1103/PhysRevLett.111.243902.
  9. Sciammarella C A, Lamberti L, Optical detection of information at the sub-wavelength level. In: Proc NANOMEC06 Symp Mater Sci Mater Mech at the Nanoscale, Nov (2006), Bari, Italy.
  10. Sciammarella C A, Lamberti L, Determination of the shape of objects in the range 1/20 of the wavelength of light. In: Proc 2007 SEM Ann Confer Exp Appl Mech, Springfield (MA), June 2007.
  11. Sciammarella C A, Lamberti L (2007). Observation of fundamental variables of optical techniques in the nanometric range. In: Experimental Analysis of Nano and Engineering Materials and Structures (E.E. Gdoutos, Ed.). Springer (The Netherlands), 2007.
  12. Sciammarella C A, Lamberti L, Demelio G, Di Cuonzo A, Boccaccio A, Application of plasmons to the determination of surface profile and contact stress distribution. In: Proc XXXVIII Meet Italian Assoc Stress Analysis. Rome (Italy), Sept 2008.
  13. Sciammarella C A, Lamberti L, The equivalent of Fourier holography at the nano-range. In: Proc 2008 SEM XI Int’l Congress in Exp Appl Mech, Orlando (FL), June 2008.
  14. Sciammarella C A, Lamberti L, Sciammarella F M, Demelio G, Dicuonzo A, Boccaccio A, High accuracy micro scale measurements using a conventional far field microscope. In: Proc 2009 SEM Ann Confer Exp Appl Mech, Albuquerque (NM), June 2009.
  15. Sciammarella C A, Lamberti L, Sciammarella F M, The equivalent of Fourier holography at the nanoscale, Exp Mech, 49(2009)747–773.
  16. Sciammarella C A, Lamberti L, Sciammarella F M. Light generation at the nano scale, key to interferometry at the nano scale. In: Conf Proc Soc Exp Mech Ser; Exp Appl Mech, Vol 6 (T Proulx, Ed.), pp. 103-115. Springer, New York, (USA), 2010.
  17. Sciammarella C A, Lamberti L, Sciammarella F M, Demelio G, Di Cuonzo A, Boccaccio A, Application of plasmons to the determination of surface profile and contact strain distribution, Strain, 46(2010)307–323.
  18. Sciammarella C A, Sciammarella F M, Lamberti L, Experimental Mechanics in Nano-Engineering. In: Recent Advances in Mechanics, (Gdoutos E E, Kounadis A N, Eds, (Springer, The Netherlands), 2011, pp 275–312.
  19. Sciammarella C A, Lamberti L, Sciammarella F M, Optical holography reconstruction of nano-objects. In: Holography, Research and Technologies, (J Rosen, Ed.), Chapter 9, pp 191–216. INTECH, Rijeka (Croatia), 2011.
  20. Sciammarella C A, Lamberti L, Sciammarella FM, Holography at the nano level with visible light wavelengths. In: Holography – Basic Principles and Contemporary Applications (E Mihaylova, Ed), Chapter 11, pp 243–281. INTECH, Rijeka (Croatia), 2013.
  21. Sciammarella F M, Sciammarella CA, Lamberti L, Nano-holographic interferometry for in vivo observations. In: Biomedical Optical Phase Microscopy and Nanoscopy, (Shaked N T, Zalevskey Z, Satterwhite L L Eds), Chapter 17, (Elsevier, The Netherlands), pp 353–385, 2013.
  22. Berry M V, Evanescent and real waves in quantum billiards and Gaussian beams, J Phys A: Math Gen, 27(1994) 391–398.
  23. Girard C, Dereux A, Martin O J F, Devel M, Generation of optical standing waves around mesoscopic surface structures: scattering and light confinement, Phys Rev B, 52(1995)2889–2898.
  24. Toraldo di Francia G, Super-gain antennas and optical resolving power, Nuovo Cimento, 9(1952)426–435.
  25. Toraldo di Francia G, La diffrazione della luce. Edizioni Scientifiche Einaudi, Torino (Italy), 1958.
  26. Vigoureux J M, De l’onde évanescente de Fresnel au champ proche optique, Annal de la Fond L de Broglie, 28 (2003)525–548.
  27. Papoulis A, The Fourier integral and its applications. McGraw-Hill, New York (USA), 1962.
  28. Kretschmann E, Die bestimmung der oberflächenrauhigkeit dünner schichten durch messung der winkelabhängigkeit der streustrahlung von oberflächen plasma schwingungen. Opt Commun, 10(1977)353–356.
  29. Heitmann D, Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces, J Phys C: Solid State Phys, 10(1977)397–405.
  30. Teng Y Y, Stern E A, Plasmon radiation from metal gratings, Phys Rev Lett, 19(1967)511–514.
  31. van de Hulst H C, Light Scattering by Small Particles, 2nd Edition. Courier Dover Publications, Mineola (USA), 1981.
  32. Sciammarella C A, Sciammarella F M, Experimental Mechanics of Solids, (John Wiley & Sons, Chichester, UK) ,2012.
  33. Ebbeni J, Etude du phénomène de moirure par réflexion d’un réseau plan sur une surface gauchie et de son application en analyse des contraintes et des déformations, VDI Experimentelle Spannung Analyse Berichte, 102 (1966)75-81.
  34. Sciammarella C A, Combel O, Interferometric reflection moiré. In: Materials Characterization Interferometry VII (R.J. Pryputniewicz et al. eds), Proc SPIE 2545 (1995) 72-85. Int’l Soc for Opt Eng, Bellingham (WA), USA.
  35. Guild J, The interference systems of crossed diffraction gratings, (Clarendon Press, Oxford, UK), 1956.
  36. Stout K F, Blunt L, Three-dimensional surface topography, 2nd Edn, (Penton Press, London, UK), 2000.
  37. International Organization for Standardization; Surface texture: Profile method – Terms, definitions and surface texture parameters. ISO Specification 4287, (1997).
  38. Sciammarella C A, Lamberti L, Sciammarella FM, High accuracy optical measurements of surface topography. In: Confer Proc Soc Exp Mech Ser; Exp Appl Mech, Vol 6, (Proulx T, Ed), (Springer, New York,USA) 2010.
  39. Born M, Wolf E, Principles of Optics VII Edn, (Cambridge University Press, Cambridge, UK).1999.
  40. Sciammarella F M, Sciammarella C A, Lamberti L, Burra V, Industrial finishes of ceramic surfaces at the micro-level and its influence on strength. In: Confer Proc Soc Exp Mech Ser; Exp Appl Mech, Vol 6, (Proulx T, Ed.), pp. 9-16. Springer, New York (USA) 2010.
  41. Sciammarella F M, Matusky M J, Correlation between mechanical strength and surface conditions of laser assisted machined silicon nitride. In: Confer Proc Soc Exp Mech Ser; Exp Appl Mech, Vol 5, (Proulx T, Ed.), (Springer, New York, USA), 2011, pp 187–197.
  42. Quinn G D, Fractography of glasses and ceramics VI: Ceramic Transactions, Vol 230, (Wiley-American Ceramic Society, USA), 2012.
  43. General Stress Optics Inc. Holo-Moiré Strain Analyzer Software HoloStrain, Version 2.0. General Stress Optics Inc., Chicago, IL (USA), www.stressoptics.com