Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) 341-350

Holographic photopolymers applied to biosensing and efficient energy

Inmaculada Pascual1,2, Manuel G Ramírez2,3, Marta Morales-Vidal1,2, Tomás Lloret1, Kheloud Berramdane1,
José Carlos García-Vázquez2, Belén Nieto-Rodriguez1, and Augusto Beléndez2,3
1Departamento de Óptica, Farmacología y Anatomía. Universidad de Alicante. Spain
2I.U. Física Aplicada a las Ciencias y las Tecnologías. Universidad de Alicante.
Carret. San Vicente del Raspeig s/n. E03690 San Vicente del Raspeig –Alicante. Spain
3Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal. Universidad de Alicante. Spain
Dedicated in memory of Prof John Sheridan


Holographic photopolymers can be used for two breakthrough applications, biosensing, and efficient energy. Related to biosensing a real challenge is to store time-stable holographic gratings in hydrogel matrices immersed in aqueous media. The storage of unslanted transmission holograms in hydrogels is the main objective of this work. The optimization of the washing steps using PBST and DMSO:H2O as solvents has been studied.
Obtaining an adaptable holographic element to concentrate the sunlight avoiding the need for expensive tracking systems is the another goal of this study. The efficient energy study consists in recording a multiplexed holographic lens with low frequency (545 lines/mm) in a low-toxicity photopolymer to focus the sunlight from sunrise to sunset. The efficiency has been evaluated by measuring the short circuit current (Isc) at different incident angles under solar illumination and we obtained wide acceptance angle systems. This study reaches the trade-off between a high incident acceptance angle and good efficiency. © Anita Publications. All rights reserved.
Keywords: Holography, Photopolymers, Biosensing, Energy Efficiency


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Kostuk R K, Holography Principles and Applications, (CRC Press: Boca Raton, FL, USA) 2019.
  2. Barachevsky V, The Current Status of the Development of Light-Sensitive Media for Holography (A Review), Opt Spectroc, 124(2018)373–407.
  3. Avella-Oliver M, Carrascosa J, Puchades R, Maquieira A, Diffractive protein gratings as optically active transducers for high-throughput label-free immunosensing, Anal Chem, 89(2017)9002–9008.
  4. Lucío M I, Cubells-Gómez A, Maquieira A, Bañuls M J, Hydrogel-based holographic sensors and biosensors: Past, present, and future, Anal Bioanal Chem, 414(2022)993–1014.
  5. Wang X, Liu X, Wang X, Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo- responsive hydrogel, Sens Actuators B Chem, 204(2014)611–616.
  6. Parlak O, Keene ST, Marais A, Curto VF, Salleo A, Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing, Sci Adv, 4(2018)eaar2904; doi. 10.1126/sciadv.aar2.
  7. Ramírez M G, Lucio M I, Morales-Vidal M, Beléndez A, Bañuls M J, Maquieira A, Pascual I, Holographic Transmission Gratings Stored in a Hydrogel Matrix, Proc SPIE, 11367 (2020) 113670B; doi.org/10.1117/12.2555362.
  8. 8 Zawadzka M, Mikulchyk T, Cody D, Martin S, Yetisen A, Hurtado J, Butt H, Mihaylova E, Awala H, Mintova S, Hyun Yun S, Naydenova I, Photonic Materials for Holographic Sensing, In Photonic Materials for Sensing, Biosensing and Display Devices; Serpe MJ, Kang Y, Zhang QM, Eds. (Springer International Publishing, New York), 2016, pp 315–319.
  9. Tavakoli J, Tang Y, Hydrogel based sensors for biomedical applications: An updated review, Polymers, 9(2017)364–388.
  10. Sun X, Agate S, Salem K S, Lucia L, Pal L, Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications: A Review, ACS Appl Bio Mater, 4(2021)140–62.
  11. Yetisen A K, Butt H, Volpatti L R, Pavlichenko I, Humar M, Kwok S J J, Koo H, Kim K S, Naydenova I, Khademhosseini A, Hah S K, Yun S H, Photonic Hydrogel Sensors, Biot Adv, 34(2016)250–271.
  12. Imenes A G, Mills D R, Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review, Sol Energy Mater Sol Cells, 84(2004)19–69.
  13. Marín-Sáez J, Chemisana D, Atencia J, Collados M V, Outdoor performance evaluation of a holographic solar concentrator optimized for building integration, Appl Energy, 250(2019)1073–1084.
  14. Chemisana D, Collados M V, Quintanilla M, Atencia J, Holographic lenses for building integrated concentrating photovoltaics, Appl Energy, 110(2013)227–235.
  15. Xu N, Ji J, Sun W, Huang W, Li J, Jin Z, Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens, Appl Energy, 168(2016)269–281.
  16. Zhao J, Chrysler B, Kostuk R K, Holographic low concentration optical system increasing light collection efficiency of regular solar panels, J Photon Energy, 11(2021)027002; doi.org/10.1117/1.JPE.11.027002.
  17. Kostuk R K, Castro J, Zhang D, Holographic low concentration ratio solar concentrators. In Proceedings of Frontiers in Optics, San Jose, California United States, 11–15 October 2009.
  18. Kao H, Ma J, Wang C, Wu T, Su P, Crosstalk-Reduced Double-Layer Half-Divided Volume Holographic Concentrator for Solar Energy Concentration, Sensors, 20(2020)6903; doi.org/10.3390/s20236903.
  19. Akbari H, Naydenova I, Martin S, Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications, Appl Opt, 53(2014)1343–1353.
  20. Sreebha A B, Suresh S, Sreekala C O, Mahadevan Pillai V P, Volume holographic gratings in acrylamide-based photopolymer to provide selective light as an added input for improving the performance of dye-sensitized solar cells, Curr Sci, 114(2018)2267–2272.
  21. Wang C, Ma J, Kao H, Wu T, Su P, Wide-band high concentration-ratio volume-holographic grating for solar concentration, Sensors, 20(2020)6080; doi.org/10.3390/s20216080.
  22. Aswathy G, Rajesh C S, Sreejith M S, Vijayakumar K P, Kartha C S, Designing photovoltaic concentrators using holographic lens recorded in nickel doped photopolymer material, Sol Energy, 163(2018)70–77.
  23. Lee J H, Wu H Y, Piao M L, Kim N, Holographic solar energy concentrator using angular multiplexed and iterative recording method, IEEE Photon J, 8(2016)8400511; doi. 10.1109/JPHOT.2016.2634699.
  24. 24 .               Fernández E, Ortuño M, Gallego S, García C, Beléndez A, Pascual I, Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage, Appl Opt, 46(2007)5368–5373.
  25. Berramdane K, Ramírez M G, Zezza P, Lucio M I, Bañuls M J, Maquieira A, Beléndez A, Pascual I, Processing of holographic hydrogels in liquid media: A study by high-performance liquid chromatography and diffraction efficiency, Polymers, 14(2022)2089; doi.org/10.3390/polym14102089.
  26. Navarro-Fuster V, Ortuño M, Fernández R, Gallego S, Márquez A, Beléndez A, Pascual I, Peristrophic multiplexed holograms recorded in a low toxicity photopolymer, Opt Mater Express, 7(2017)133–147.
  27. Morales-Vidal M, Ramírez M G, Berramdane K, Lloret T, Gallego S, Beléndez A, Pascual I, Holographic solar concentrators stored in an eco-friendly photopolymer, Proc SPIE, 11774(2021)117740V; doi.org/10.1117/12.2592302.
  28. Park K, Park H, Encyclopedia of Polymer Science and Technology, (CRC Press: New York, USA); Vol 10, 1996, p 7785.
  29. Samchenko Y, Ulberg Z, Korotych Z, Multipurpose smart hydrogel systems, Adv Colloid Interface Sci. 168(2011) 247–262.
  30. Morales-Vidal M, Lloret T, Ramírez M G, Beléndez A, Pascual I, Green and wide acceptance angle solar concentrators, Opt Express, 30(2022)25366–25379.