Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) A1-A16

Holography: More than three-dimensional images

Augusto Beléndez1,2, Sergi Gallego1,2, Andrés Márquez1,2, Manuel Ortuño1,2, Jorge Francés1,2
Jaume Colomina-Martínez1, Guillem Nájar1 and Inmaculada Pascual1,3
1I.U. Física Aplicada a las Ciencias y las Tecnologías. Universidad de Alicante. Carret. San Vicente del Raspeig s/n E03690 San Vicente del Raspeig –Alicante. Spain
2Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal. Universidad de Alicante. Spain
3Departamento de Óptica, Farmacología y Anatomía. Universidad de Alicante. Spain

Dedicated in memory of Prof John Sheridan

Holography is a broad field of research that interacts with a wide range of disciplines, from physics and chemistry to art through engineering, as shown by the large number of publications that can be found on the subject. Holography is integrated into our daily lives, often associated with the rainbow-like effect on banknotes, credit cards, and ID cards. Let us also consider that holography involves many optical phenomena (coherence, diffraction, interference, analogue and digital recording devices, lasers, materials, etc.). Therefore, holography is an extraordinarily productive and attractive field as a research area. Furthermore, holographic devices facilitate the development of many applications, some of which are reviewed in the present paper. © Anita Publications. All rights reserved.
Keywords: Holography, Hologram, Holography Applications

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Gabor D, A new microscopic principle, Nature, 161(1948)777–778.
  2. Johnston S F, Holographic Visions. A History of New Science, (Oxford University Press, Oxford), 2006.
  3. Beléndez A, Sheridan J T, Pascual I, Creating holography: 75th anniversary of Gabor’s invention, Asian J Phys, 31(2022)651–662.
  4. Beléndez A, Sheridan J T, Pascual I, Holography: 50th anniversary of Dennis Gabor’s Nobel Prize: Part I. A historical perspective, Proc SPIE, 12297(2022)122970O;
  5. Beléndez A, Sheridan J T, Pascual I, Celebrating holography anniversaries: a historical perspective, Proc SPIE, 12151(2022)1215102; doi: 10.1117/12.2626920.
  6. Beléndez A, Where is the train?: An approximation to the origins of holography, (in Spanish), Opt Pura Apl, 40 (2007)281–288.
  7. Dennis Gabor – Nobel Lecture. Nobel Prize Outreach AB 2022. Fri. 21 Jan 2022. <>
  8. Benton S, doi: 10.1117/12.2626920 Holography Reinvented” in The Art and Science of Holography. A Tribute to Emmett Leith and Yuri Denisyuk, Caulfield HJ, Ed. (SPIE Press, Bellingham) 2003, p1.
  9. Johnston S F, “From white elephant to Nobel Prize: Dennis’ Gabor wavefront reconstruction”, Hist Stud Phys Biol, 36(2005)35–70.
  10. Sheridan J T, Kostuk R K, Gil A F, Wang Y, Lu W, Zhong H, Tomita Y, Neipp C, Francés J, Gallego S, Pascual I, Marinova V,  Lin S-H,  Hsu K-Y, Bruder F, Hansen S,  Manecke C,  Meisenheimer R,  Rewitz C,  Rölle T, Odinokov S, Matoba O, Kumar M, Quan X, Awatsuji Y, Wachulak P W,  Gorelaya A V, Sevryugin A A, Shalymov E V,  Venediktov V Y, Chmelik R, Ferrara M A, Coppola G, Márquez A, Beléndez A, Yang W, Yuste R,  Bianco A,  Zanutta A,  Falldorf C,  Healy J J,  Fan X ,  Hennelly B M,  Zhurminsky I,  Schnieper M, Ferrini R,  Fricke S, Situ G, Wang H,  Abdurashitov A S, Tuchin V V,  Petrov N V, Nomura T, Morim D R, Saravanamuttu K, “Roadmap on holography”, J Opt, 22(2020)123002; 10.1088/2040-8986/abb3a4.
  11. Kostuk R K, Holography Principles and Applications, (CRC Press: Boca Raton, FL, USA), 2019.
  12. Beléndez A, Holography: science, art and technology, Rev Bras Ensino Fís, 31(2009)1602;
  13. Saxby G, Practical Holography, (Institute of Physics Publishing, Bristol), 2004.
  14. Abramson N, The Making and Evaluation of Holograms, (Academia Press, Londres), 1981, p 70.
  15. Bjelkhagen H I, (Ed), Selected Papers on Holographic Recording Materials, SPIE Milestone Series Vol. MS 130 (SPIE Optical Engineering Press, Bellingham), 1996.
  16. Stetson K A, Powell R L, Interferometric hologram evaluation and real-time vibration analysis of diffuse objects, J Opt Soc Am, 55(1965)1694–1695.
  17. Vikram C S, Particle Field Holography (Cambridge University Press, Cambridge) 1992.
  18. Wormald S A, Coupland J, Particle image identification and correlation analysis in microscopic holographic particle image velocimetry, App Opt, 48(2009)6400–6407.
  19. Trolinger J D, Lal R B, McIntosh D, Witherow W K, Holographic particle-image velocimetry in the First International Microgravity Laboratory aboard the Space Shuttle Discovery, Appl Opt, 35(1996)681–689.
  20. Stone T W, Thompson B J (eds), Selected papers on Holographic and Diffractive Lenses and Mirrors, SPIE Milestone Series Vol MS 34, (SPIE Optical Engineering Press, Bellingham), 1991.
  21. Reutov A T, Excitation of the optical fiber by a holographic interconnection, J Commun Technol Electron, 52 (2007)706–708.
  22. Zhao J, Chrysler B, Kostuk R K, Holographic low concentration optical system increasing light collection efficiency of regular solar panels, J Photon Energy, 11(2021)027002;
  23. Morales-Vidal M, Lloret T, Ramírez M, Beléndez A, Pascual I, Green and wide acceptance angle solar concentrators, Opt Exp, 30(2022)25366–25379.
  24. Dickson L D, Sincerbox G T, Holographic scanners for bar code readers, in Optical Scanning, Marshall G E (ed), (Marcel Dekker, New York), 1991.
  25. Fisher R L, Design methods for a holographic head-up display curved combiner, Opt Eng, 28(1989)616–621.
  26. Skirnewskaja J, Wilkinson T D, Automotive holographic head-up displays, Adv Mat, 34(2022)2110463;
  27. Zanutta A, Landoni M, Riva M, Bianco A, Compact spectral multiplexing VPHGs using stacked photopolymeric layers, Proc SPIE, 10558(2018)1055805;
  28. Fernández R, Bleda S, Gallego S, Neipp C, Márquez A, Tomita Y, Pascual I, Beléndez A, Holographic waveguides in photopolymers, Opt Express, 27(2019)827–840.
  29. Gallego S, Puerto D, Morales-Vidal M, Ramírez M G, Taleb S I, Hernández A, Ortuño M, Neipp C, Tunable Waveguides Couplers Based on HPDLC for See-Through Applications, Polymers, 13(2021)1858;
  30. Malallah R, Cassidy D, Muniraj I, Ryle J P, Healy J J, Sheridan J T, Self-written waveguides in photopolymer, Appl Opt, 57(2018)E80-E88.
  31. Fally M, Klepp J, Tomita Y, Nakamura T, Pruner C, Ellabban M A, Rupp R A, Bichler M, Drevenšek Olenik I, Kohlbrecher J, Eckerlebe H, Lemmel H, Rauch H, Neutron optical beam splitter from holographically structured nanoparticle-polymer composites, Phys Rev Lett, 105(2010)123904;
  32. Klepp J, Pruner C, Tomita Y, Geltenbort P, Drevenšek-Olenik I, Gyergyek S, Kohlbrecher J, Fally M, Holographic Gratings for Slow-Neutron Optics, Materials, 5(2012)2788–2815.
  33. Sheridan J T, Beléndez A, Pascual I, Holography: 50th anniversary of Dennis Gabor’s Nobel Prize: Part II. An engineering perspective, Proc SPIE, 12297(2022)122970P;
  34. Lohmann A W, Paris D, Binary Fraunhofer holograms generated by computer, Appl Opt, 6(1967)1739–1748.
  35. Yaroslavsky L, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms, (Springer Science+Business Media, New York), 2004.
  36. Coufal H J, Psaltis D, Sincerbox G T (Eds), Holographic Data Storage, (Springer-Verlag, Berlin), 2000.
  37. Fernández E, Ortuño M, Gallego S, García C, Beléndez A, Pascual I, Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage, Appl Opt, 46(2007)5368–5373.
  38. Bjelkhagen H I, Improved Optical Document Security Techniques Based on Volume Holography and Lippmann Photography, in Optical Imaging Sensors and Systems for Homeland Security Applications, Javidi B (ed), (Springer-Verlag, New York), 2006.
  39. Aldhous P, Murder by medicine, Nature, 434(2005)132–134.
  40. Hopwood H I, New holographic overlay, Proc SPIE, 1509(1991)26–35.
  41. Larkin K G, Fletcher P A, A coherent framework for fingerprint analysis: are fingerprints holograms?, Opt Exp, 15(2007)8667–8677.
  42. Yetisen A K, Butt H, Da Cruz Vasconcellos F, Montelongo Y, Davidson C A B, Blyth J, Chan L, Carmody J B, Vignolini S, Steiner U, Baumberg J J, Wilkinson T D, Lowe C R, Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors, Adv Opt Mat, 2(2014)250–254.
  43. Naydenova I, Holographic sensors, In Optical Holography, Blanche P A (ed), (Elsevier Inc, Amsterdam), 2020.
  44. Zawadzka M, Mikulchyk T, Cody D, Martin S, Yetisen A, Hurtado J, Butt H, Mihaylova E, Awala H, Mintova S, Hyun Yun S, Naydenova I, Photonic Materials for Holographic Sensing, In Photonic Materials for Sensing, Biosensing and Display Devices; Serpe M J, Kang Y, Zhang Q M, (eds), (Springer International Publishing, New York), 2016, 315–319.
  45. Hildebrand B P, Progress in acoustical holography, Proc SPIE, 532(1983)63–88.
  46. Siebert L D, Large-scene front-lighted hologram of an human subject, Proc IEEE, 56(1968)1242–1243.
  47. Bjelkhagen H I, Holographic portraits made by pulse lasers, Leonardo, 25(1992)443–448.
  48. Sarakinos A, Lembessis A, Color Holography for the Documentation and Dissemination of Cultural Heritage: OptoClonesTM from Four Museums in Two Countries, J Imaging, 5(2019)59;
  49. Bjelkhagen H I, Display holography: From Lippmann Photography to Color Holography, in The Art and Science of Holography: A Tribute to Emmett Leith and Yuri Denisyuk, Caulfield H J (ed), (SPIE Press, Bellingham), 2004.
  50. Bjelkhagen H I, Mirlis E, Color holography to produce highly realistic three-dimensional images, Appl Opt, 47 (2008)A123–A133.
  51. Bjelkhagen H I, Silver-Halide Recording Materials for Holography and Their Processing, (Springer-Verlag, Berlin), 1995.
  52. Colburn W S, Review of Materials for Holographic Optics, J Imaging Sci Technol, 41(1997)443–456.
  53. Kumar S, Rao P, Joseph J, Photopolymer Holography, Asian J Phys, 24(2015)1449–1464.
  54. Ortuño M, Gallego S, Márquez A, Neipp C, Pascual I, Beléndez A, Biophotopol: A Sustainible Photopolymers for Holographic Data Storage Applications, Materials, 5(2012)772–783.
  55. Guo J, Gleeson M R, Sheridan J T, A Review of the Optimisation of Photopolymers Materials for Holographic Data Storage, Phys Res Int, 2012(2012)803439; doi:10.1155/2012/803439.
  56. Bruder F-K, Fäcke T, The Chemistry and Physics of Bayfol® HX Film Holographic Photopolymer, Polymers, 9 (2017)472;
  57. Downing E, Holographic images – The intersection of art, science, and technology, Spectrum MIT, Winter 1999. Tues. 3 May 2023. <>.
  58. Wilhelmsson H, Holography: A New Scientific Technique of Possible Use to Artists, Leonardo, 1(1968)161–169.
  59. Benyon M, Holography as an art medium, Leonardo, 6(1973)1–9.
  60. Lissack S, Dali in Holographic Space – SPIE. Monday, 1 May 2023. <>.
  61. Bjelkhagen H I, Swedish Artist’s: Early Art Holograms, SPIE Professional, July-September 2014, 31. 1 May 2023.  <>.
  62. Bjelkhagen H I, “The early art holograms of Carl Fredrik Reuterswärd, SPIE Professional, July 2014, p. 31
  63. Hiro Yamagata – Quantum Field X3 installation project at the Guggenheim Museum Bilbao (08.13.2004-04.30.2005). Mon. 1 May 2023. <>.
  64. Johnston S F, From science to subcultures, Opt Photonics News, 15(2004)36–41.