Asian Journal of Physics Vol. 30 Nos 10 & 11 (2021) 1437-1446

Improved particle size estimation in digital in-line holography based on Fienup’s iterative algorithm
Anik Ghosh, Rishikesh Kulkarni, Chandra Bhanu Gupt and Sreedeep Sekharan


Abstract

This paper proposes Fienup’s algorithm based iterative reconstruction method in digital in-line holography to reduce the twin image effect and background noise of the reconstructed images to improve the particle size estimation accuracy. Simulation and experimental results are provided to demonstrate proposed method’s applicability in practical scenario. © Anita Publications. All rights reserved.
Keywords: Digital holography, Particle size estimation, Fienup’s iterative algorithm.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Goodman J W, Introduction to Fourier optics, Roberts and Company Publishers, 2005.
  2. Ozcan A, McLeod E, Lensless imaging and sensing, Annu Rev Biomed Eng, 18 (2016)77–102.
  3. Kumar M, Quan X, Awatsuji Y, Cheng C, Hasebe M, Tamada Y, Matoba, O., Common-path multimodal three-dimensional fluorescence and phase imaging system, J Biomed Opt, 25(2020), Art.032010; doi: 10.1117/1.JBO.25.3.032010.
  4. Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M, 4D compressive sensing holographic microscopy imaging of small moving objects, Opt Lett, 44(2019)2827-2830.
  5. Evans H B, Gorumlu S, Aksak B, Castillo L Sheng J, Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars, Sci Rep, 6(2016)1-12.
  6. Li C, Panday R, Gao X, Hong J, Rogers W A, Measuring particle dynamics in a fluidized bed using digital in-line holography, Chem Eng J. 405(2021), Art. 126824; doi.org/10.1016/j.cej.2020.126824.
  7. Dawprateep S, Widjaja J, Single-pixel holographic rod-shaped particle sizing without depth search using Wigner-Ville distribution, Opt Lasers Eng. 142 (2021) Art. 106606; doi.org/10.1016/j.optlaseng.2021.106606.
  8. Lin Z, Wu Y, Zhuo Z, Wu X, Dual-sheet interferometric particle imaging for opaque particle size and 2D location measurement, Powder Technol, 382 (2021)505–511.
  9. Prasad S, Schweizer C, Bagaria P, Saini A, Kulatilaka W D, Mashuga C V, Investigation of particle density on dust cloud dynamics in a minimum ignition energy apparatus using digital in-line holography, Powder Technol, 384(2021)297-303.
  10. Kumar S S, He Z, Hogan C J(Jr), Fredericks S A, Hong J, Evaluation of laser diffraction-based particle size measurements using digital inline holography, Meas Sci Technol, 31(2020) Art125201; doi.org/10.1088/1361-6501/aba78b.
  11. Shao S, Mallery K, Hong J, Machine learning holography for measuring 3D particle distribution, Chem Eng Sci, 225(2020) Art.115830; doi.org/10.1016/j.ces.2020.115830. .
  12. Schnars U, Jüptner W, Direct recording of holograms by a CCD target and numerical reconstruction, Appl Opt, 33(1994)179–181.
  13. Li S, Zhao Y, Ye Y, Improved minimum intensity projection in holographic reconstruction via snr-enhanced holography, J Mod Opt, 68(2021)322–326.
  14. Guildenbecher D R, Gao J, Reu P L, Chen J, Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method, Appl Opt, 52(2013) 3790–3801.
  15. Falgout Z, Chen Y, Guildenbecher D R, Improving the spatial dynamic range of digital inline particle holography, Appl Opt, 58(2019)A65-A73.
  16. Huang Z, Cao L, Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction, Opt Lasers Eng, 130(2020), Art. 106090; doi.org/10.1016/j.optlaseng.2020.106090.
  17. Ghosh A, Kulkarni R. Improving particle detection and size estimation accuracy in digital in-line holography using autoregressive interpolation. Appl Opt, 60(2021)8728–8736.
  18. Gerchberg R, Saxton W, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, 35(1972)237–246.
  19. Fienup J R, Phase retrieval algorithms: a comparison, Appl Opt, 21(1982)2758–2769.
  20. Momey F, Denis L, Olivier T, Fournier C, From Fienup’s phase retrieval techniques to regularized inversion for in-line holography: tutorial. J Opt Soc Am A, 36(2019)D62–D80.
  21. Dilanian R A, Williams G J, Whitehead L W, Vine D J, Peele E, Balaur, McNulty I, Quiney H M, Nugent K A, Coherent diffractive imaging: a new statistically regularized amplitude constraint, New J Phys.12 (2010), Art 093042; doi.org/10.1088/1367-2630/12/9/093042.
  22. Soulez F, Thiébaut E, Schutz A, Ferrari A, Courbin F, Unser M, Proximity operators for phase retrieval, Appl Opt, 55(2016)7412–7421.
  23. Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Özkul C, Application of wavelet transform to hologram analysis: three-dimensional location of particles, Opt Lasers Eng, 33(2000)409–421.
  24. Denis L, Fournier C, Fournel T, Ducottet C, Jeulin D, Direct extraction of the mean particle size from a digital hologram, Appl Opt, 45 (2006) 944–952.
  25. Soontaranon S, Widjaja J, Asakura T, Extraction of object position from in-line holograms by using single wavelet coefficient, Opt Commun, 281(2008)461–1467.
  26. Khanam T, Darakis E, Rajendran A, Kariwala V, Asundi A K, Naughton T J, On-line digital holographic measurement of size and shape of microparticles for crystallization processes, in Ninth Int’l Symp Laser Metrology, Vol. 7155 (International Society for Optics and Photonics, 2008), p. 71551K.
  27. Darakis E, Khanam T, Rajendran A, Kariwala V, Naughton T J, Asundi A K, Microparticle characterization using digital holography, Chem Eng Sci, 65(2010)1037–1044.
  28. Khanam T, Rahman M N, Rajendran A, Kariwala V, Asundi A K, Accurate size measurement of needle-shaped particles using digital holography, Chem Eng Sci, 66(2011)2699–2706.
  29. Sheng J, Malkiel E, Katz J, Digital holographic microscope for measuring three-dimensional particle distributions and motions, Appl Opt, 45(2006)3893–3901.
  30. Singh D K, Panigrahi P, Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles, Opt Express, 18(2010)2426–2448.
  31. Tian J, Loomis N, Domínguez-Caballero J A, Barbastathis G, Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography, Appl Opt, 49(2010)1549–1554.
  32. Ilchenko V, Lex T, Sattelmayer T, Depth position detection of the particles in digital holographic particle image velocimetry (dhpiv), in Fundamental Problems of Optoelectronics and Microelectronics II, vol. 5851 (International Society for Optics and Photonics, 2005), pp. 123–128; doi.org/10.1117/12.634069.
  33. Fugal J P, Schulz T J, Shaw R A, Practical methods for automated reconstruction and characterization of particles in digital in-line holograms, Meas Sci Technol, 20 (2009), Art 075501; doi.org/10.1088/0957-0233/20/7/075501.
  34. Guildenbecher D R, Gao J, Reu P L, Chen J, Digital holography simulations and experiments to quantify the accuracy of 3d particle location and 2D sizing using a proposed hybrid method, Appl Opt, 52(2013)3790–3801.
  35. Gao J, Guildenbecher D R, Reu P L, Chen J, Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method, Opt Express, 21(2013)26432–26449.
  36. Guildenbecher D R, Reu P L, Stuaffacher H I , Grasser T, Accurate measurement of out-of-plane particle displacement from the cross correlation of sequential digital in-line holograms, Opt Lett, 38(2013)4015–4018.
  37. Falgout Z, Chen Y, Guildenbecher D R. Improving the spatial dynamic range of digital inline particle holography, Appl Opt, 58(2019)A65–A73.
  38. Latychevskaia T, Fink H-W. Practical algorithms for simulation and reconstruction of digital in-line holograms, Appl Opt, 54(2015)2424–2434.