Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) 265-274

Material response and energetic sensitivity of epoxy-based material for volume holography

T Sabel-Grau
Nanopatterned Biomaterials (Secr. C 1), Department of Chemistry,
Technische Universität Berlin, Berlin, Germany.
Dedicated in memory of Prof John Sheridan


Results are presented on the material response and energetic sensitivity of a new organic photosensitive material for volume holographic recording. Optimized chemical formulation results in a high energetic sensitivity, strong angular selectivity as well as high inducible refractive index contrast and high diffraction efficiency with good dimensional stability. The investigations shown here confirm the overall performance of the material and specifically examine the effects of recording intensity, exposure time, and prebake duration on the material response, with special attention to energy sensitivity. © Anita Publications. All rights reserved.
Keywords: Volume holography, Photopolymer, Material response, Refractive index contrast.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Sheridan J T, Kostuk R, Fimia A, Wang Y, Lu W, Zhong H, Tomita Y, Neipp C, Francés J, Gallego S, Pascual I, Marinova V, Lin S-H, Hsu K-Y, Bruder F, Hansen S, Manecke C, Meisenheimer R, Rewitz C, Rölle T, Odinokov S, Matoba O, Kumar M, Quan X, Awatsuji Y, Wachulak P W, Gorelaya A V, Sevryugin A A, Shalymov E V, Venediktov V Y, Chmelik R, Ferrara M A, Coppola G, Márquez A, Beléndez A, Yang W, Yuste R, Bianco A, Zanutta A, Falldorf C, Healy J J, Fan X, Hennelly B M, Zhurminsky I, Schnieper M, Ferrini R, Fricke S, Situ G, Wang H, Abdurashitov A S, Tuchin V V, Petrov N V, Nomura T, Morim D R, Saravanamuttu K, Roadmap on Holography, J Opt, 22(2020); doi.10.1088/2040-8986/abb3a4.
  2. Roy D, Cambre J N, Sumerlin B S, Future perspectives and recent advances in stimuli-responsive materials, Prog Polym Sci, 35(2010)278–301.
  3. Colburn W S, Haines K A, Volume Hologram Formation in Photopolymer Materials, Appl Opt, 10(1971)1636–1641.
  4. Bruder F.-K, Fäcke T, Rölle T, The Chemistry and Physics of Bayfol® HX Film Holographic Photopolymer, Polymers, 9(2017)472; doi.org/10.3390/polym9100472.
  5. Mikulchyk T, Murphy K, Walsh J, Martin S, Cody D, Naydenova I, Improving the Angular Visibility of Photopolymer-Based Reflection Holograms for Sensing Applications, Sensors, 23(2023); doi.org/10.3390/s23094275.
  6. Zezza P, Lucío M I, Fernández, Maquieira E, Bañuls M.-J, Surface Micro-Patterned Biofunctionalized Hydrogel for Direct Nucleic Acid Hybridization Detection, Biosensors, 13(2023); doi.org/10.3390/bios13030312.
  7. Rogers B, Mikulchyk T, Oubaha M, Cody D, Martin S, Naydenova I, Improving the Holographic Recording Characteristics of a Water-Resistant Photosensitive Sol-Gel for Use in Volume Holographic Optical Elements, Photonics, 9(2022)636; doi.org/10.3390/photonics9090636.
  8. Sabel-Grau T, Tyushina A, Babalik C, Lensen M C, UV-VIS Curable PEG Hydrogels for Biomedical Applications with Multifunctionality, Gels, 8(2022)164; doi.org/10.3390/gels8030164.
  9. Neipp C, Beléndez A, Gallego S, Ortuño M, Pascual I, Sheridan J T, Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material, Opt Express, 11(2003)1835–1843.
  10. Guo J, Gleeson M R, Sheridan J T, A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage, Phys Res Int, Vol 2012, Article ID 803439; doi:10.1155/2012/803439.
  11. Trout T J, Schmieg J J, Gambogi W J, Weber A M, Optical Photopolymers: Design and Applications, Adv Mater, 10(1998)1219–1224.
  12. Colvin V L, Larson R G, Harris A L, Schilling M L, Introduction, I. Quantitative model of volume hologram formation in photopolymers, J Appl Phys, 81(1997)5913–5923.
  13. Waldmann D A, Ingwall R T, Dahl P K, Horner M G, Kolb E S, H.-Y S Li, Minns R A, Schild H G, Cationic ring-opening photopolymerization methods for volume hologram recording, In Proc SPIE 2689, 1996, pp 127–141.
  14. Gleeson M R, Guo J, Sheridan J T, Optimisation of photopolymers for holographic applications using the Non- local Photopolymerization Driven Diffusion model Optimisation of photopolymers for holographic applications using the Non-local Photo- polymerization Driven Diffusion model, Opt Express, 19(2011)22423–22436.
  15. Kelly J V, Gleeson M R, Close C E, O’Neill F T, Sheridan J T, Gallego S, Neipp C, Temporal response and first order volume changes during grating formation in photopolymers, J Appl Phys, 99(2006)113105; doi.org/10.1063/1.2200400.
  16. Babeva T, Naydenova I, Mackey D, Martin S, Toal V, Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer, J Opt Soc Am B, 27(2010)197–203.
  17. Ingwall R T, Photopolymer Systems. In Holographic data storage; Coufal H J, Psaltis D, Sincerbox G T, (eds), (Springer: Berlin), 2000; pp 171–197.
  18. Hao-Yun W, Liang-Cai C, Claire G, Zhen-Feng X, Ming-Zhao H, Qing-Sheng H, Shu-Rong H, Guo-Fan J, Holographic Grating Formation in Cationic Photopolymers with Dark Reaction, Chin Phys Lett, 23(2006)2960; doi. 10.1088/0256-307X/23/11/021.
  19. Decker C, Moussa K, Kinetic study of the cationic photopolymerization of epoxy monomers, J Polym Sci. Part A Polym Chem, 28(1990)3429–3443.
  20. Sabel T, Orlic S, Pfeiffer K, Ostrzinski U, Grützner G, Free-surface photopolymerizable recording material for volume holography, Opt Mater Express, 3(2013)329–338.
  21. Jeong Y.-C, Lee S, Park J.-K, Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers, Opt Express, 15(2007)1497–1504.
  22. Schilling M L, Colvin V L, Dhar L, Harris A L, Schilling F C, Katz H E, Wysocki T, Hale A, Blyler L L, Boyd C, Acrylate Oligomer-Based Photopolymers for Optical Storage Applications, Chem Mater, 11(1999)247–254.
  23. Sabel T, Lensen M C, Volume Holography: Novel Materials, Methods and Applications. In Holographic Materials and Optical Systems, Naydenova I, Babeva T, Nazarova D, (Eds), InTech: Rijeka, Croatia, 2017; pp. 3–25.
  24. Sabel T, Spatially resolved analysis of Bragg selectivity, Appl Sci, 5(2015)1064–1075.
  25. Caulfield H J, Handbook of Optical Holography, (Academic Press: New York), 1979.
  26. Criante L, Castagna R, Vita F, Lucchetta D E, Simoni F, Nanocomposite polymeric materials for high density optical storage, J Opt A: Pure Appl Opt, 11(2009) 24011; 10.1088/1464-4258/11/2/024011.
  27. Moharam M G, Young L, Criterion for Bragg and Raman-Nath diffraction regimes, Appl Opt, 17(1978)1757–1759.
  28. David B.-R. Understanding Diffraction in Volume Gratings and Holograms. In Holography; Mihaylova E, (Ed)’; IntechOpen: Rijeka, 2013.
  29. Booth B L, Photopolymer Material for Holography, Appl Opt, 14(1975)593–601.
  30. Coufal H J, Psaltis D, Sincerbox G T, Holographic Data Storage, (Springer: Berlin), 2000.
  31. Morales-Vidal M, Ramírez M, Sirvent D, Martínez Guardiola F, Álvarez M, Pascual I, Efficient and stable holographic gratings stored in an environmentally friendly photopolymer. In IV International Conference on Applications of Optics and Photonics; 2019; p 202.
  32. Pinto V C, Sousa P J, Cardoso V F, Minas G, Optimized SU-8 Processing for Low-Cost Microstructures. Micromachines 2014, 5, 738–755.
  33. Sabel-Grau T, The Interplay of Processing-Related Influences on the Formation of Volume Holographic Gratings in a Free-Surface Epoxy-Based Recording Material, Macromol, 3(2023)211–223.
  34. Sabel-Grau T, Influence of Pre-Exposure on the Material Response of Epoxy-Based Volume Holographic Recording Material, Polym, 14(2022)11; doi.org/10.3390/polym14112193.
  35. Sabel T, Spatial Frequency Response of Epoxy-Based Volume Holographic Recording Material, Mol, 2(2019)1–9.
  36. Hata E, Mitsube K, Momose K, Tomita Y, Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization, Opt Mater Express, 1(2011)207–222.
  37. Moharam M G, Gaylord T K, Rigorous coupled-wave analysis of planar-grating diffraction, J Opt Soc Am, 71(1981)811–818.
  38. Steckman G, Havermeyer F, High spatial resolution measurement of volume holographic gratings, Proc SPIE 6163(2006); doi.org/10.1117/12.646413.
  39. McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L, Microholographic multilayer optical disk data storage, Appl Opt, 44(2005)3197–3207.
  40. Bruder F.-K, Fäcke T, Hansen S, Manecke C, Rewitz C, Rölle T, Orselli E, Wewer B, On the impact of incoherent pre-exposure on vHOE recording in Bayfol HX film for see-through applications, In SPIE 10558, Practical Holography XXXII: Displays, Materials, and Applications; Bjelkhagen H I, Bove V M, (Eds), 2018, p 18.
  41. Liu Y, Li Z, Zang J, Wu A, Wang J, Lin X, Tan X, Barada D, Shimura T, Kuroda K, The optical polarization properties of phenanthrenequinone-doped Poly(methyl methacrylate) photopolymer materials for volume holographic storage, Opt Rev, 22(2015)837–840.
  42. Hu P, Li J, Jin J, Lin X, Tan X, Highly Sensitive Photopolymer for Holographic Data Storage Containing Methacryl Polyhedral Oligomeric Silsesquioxane, ACS Appl Mater Interfaces, 14(2022)21544–21554.
  43. Sánchez C, Escuti M J, van Heesch C, Bastiaansen C W M, Broer D J, Loos J, Nussbaumer R, TiO2 Nanoparticle–Photopolymer Composites for Volume Holographic Recording, Adv Funct Mater, 15(2005)1623–1629.