Asian Journal of Physics Vol 31, No 8 (2022) 885-894

Multiplexing in Shearography

Rajpal S Sirohi
Alabama A & M University, Huntsville AL 35802, USA

This article is dedicated to Professor Cesar Sciammarella


Shearography is a non-destructive testing technique. It can measure six surface strains when an object is subjected to an external agency. The paper reviews methods that are used to measure more than one strain simultaneously or sequentially. Also, it contains information on methods that combine shearography with speckle interferometry to yield information about deformation as well as its derivative. © Anita Publications. All rights reserved.
Keywords: Speckle metrology, Interferometry, Shearography, Speckle phenomenon


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Leendertz J A, Interferometric displacement measurement on scattering surfaces utilizing speckle effect, J Phys E: Sci Instrum, 3(1970)214–218.
  2. Butters J N, Leendertz J A, Speckle pattern and holographic techniques in engineering metrology, Opt Laser Technol, 3(1971)26–30.
  3. Rastogi P K (Ed), Digital speckle pattern interferometry and related techniques, (John Wiley, England), 2001.
  4. Erf R K (Ed), Speckle Metrology, (Academic, New York), 1978.
  5. Sirohi R S (Ed.), Speckle Metrology, (Marcel Dekker, New York), 1993.
  6. Jones R, Wykes C, Holographic and Speckle interferometry, (Cambridge University Press, Cambridge), 1983.
  7. Steinchen W, Yang L, Digital shearography: Theory and application of digital speckle pattern shearing interferometry, (SPIE Press, Bellingham), 2003.
  8. Yang L, Xie X, Digital Shearography: New Developments and Applications, (Bellingham: SPIE Press, Bellingham), 2016.
  9. Chen F, Digital shearography: state of the art and some applications, J Electron Imaging, 10(2001)240–251.
  10. Hung Y Y, Ho H P, Shearography: An optical measurement technique and applications, Materials Science and Engineering, R49(2005)61–87.
  11. Francis D, Tatam R P, Groves R M, Shearography technology and applications: a review, Meas Sci Technol, 21 (2010)102001; org/10.1088/0957-0233/21/10/102001.
  12. Sirohi Rajpal, Shearography and its applications – a chronological review, Light: Advanced Manufacturing, 3 (2022)1–30.
  13. Hung Y Y, Liang C Y, Image shearing camera for direct measurement of surface-strains, Appl Opt, 18(1979)1046–1050.
  14. Sirohi R S, Speckle shear interferometry, Opt Laser Technol, 16(1984)251–254.
  15. Murthy R K, Mohanty R K, Sirohi R S, Kothiyal M P, Radial speckle shearing interferometer and its engineering applications, Optik, 67(1984)85–94.
  16. Hung Y Y, Durelli A J, Simultaneous measurement of three displacement derivatives using a multiple image-shearing interferometric camera, J Strain Anal Eng Des, 14(1979)81–88.
  17. Sharma D K, Sirohi R S, Kothiyal M P, Simultaneous measurement of slope and curvature with a three-aperture speckle shearing interferometer, Appl Opt, 23(1984)1542–1546.
  18. Sharma D K, Mohan N K, Sirohi R S, A holographic speckle shearing technique for the measurement of out-of-plane displacement, slope and curvature, Opt Commun, 57(1986)230–235.
  19. Mohanty R K, Joenathan C, Sirohi R S, Speckle and speckle shear interferometers combined for the simultaneous determination of out-of-plane displacement and slope, Appl Opt, 24(1985)3106–3109.
  20. Joenathan C, Sirohi R S, Holographic gratings in speckle shearing interferometry, App Opt, 24(1985)2750–2751.
  21. Iwahashi Y, Iwata K, Nagata R, Simultaneous measurement of three slope distributions with single-aperture speckle shearing interferometer, Appl Opt, 25(1986)328–329.
  22. Joenathan C, Mohanty R K, Sirohi R S, Multiplexing in speckle shear interferometry, Optica Acta, 31(1984)681–692.
  23. Joenathan C, Mohanty R K, Sirohi R S, On the methods of multiplexing in speckle shear interferometry, Optik, 69(1984)8–12.
  24. Bhaduri B, Kothiyal M P, Mohan N K, Curvature measurement using three-aperture digital shearography and fast Fourier transform, Opt Lasers Eng, 45(2007)1001–1004.
  25. Bhaduri B, Mohan N K, Kothiyal M P, Simultaneous measurement of out-of-plane displacement and slope using a multiaperture DSPI system and fast Fourier transform, Appl Opt, 46(2007)5680–5686.
  26. Steinchen W, Yang L X, Kupfer G, Mäckel P, Nondestructive testing of micro-cracks using digital speckle pattern shearing interferometry, Proc SPIE, 3098(1997)528–535.
  27. Murukeshan V M, Keong N C, Seng O L, Asundi A, Double shearography for engineering metrology: optical and digital approach, Opt Laser Technol, 33(2001)325–328.
  28. Francis D, James S W, Tatam R P, Surface strain measurement using multi-component shearography with coherent fibre-optic imaging bundles, Meas Sci Technol, 18(2007)3583–3591.
  29. Barrera E S, Fantin A V, Willemann D P, Benedet M E, Gonçalves A A (Jr), Multiple-aperture one-shot shearography for simultaneous measurements in three shearing directions, Opt Lasers Eng, 111(2018)86–92.
  30. Wang S, Dong J, Pöller F, Dong X, Lu M, Bilgeri L M, Dual-directional shearography based on a modified common-path configuration using spatial phase shift, Appl Opt, 58(2019)593–603.
  31. Dong J, Wang S, Lu M, Jakobi M, Liu Z, Dong X, Pöller F, Bilgeri L M, Bloise F S, Yetisen A K, Koch A W, Real-time dual-sensitive shearography for simultaneous in-plane and out-of-plane strain measurements, Opt Express, 27(2019)3276–3283.
  32. Yan P, Sun F, Dan X, Zhao Q, Wang Y, Lu Y, Spatial phase-shift digital shearography for simultaneous measurements in three shearing directions based on adjustable aperture multiplexing, Opt Eng, 58(2019) 054105; doi.org/10.1117/1.OE.58.5.054105.
  33. Zhong S, Sun F, Wu S, Bao F, Wang Y, Multi-directional shearography based on multiplexed Mach–Zehnder interference system, J Mod Opt, 67(2020)346–354.
  34. Anisimov A G, Groves R M, Extreme shearography: Development of a high-speed shearography instrument for quantitative surface strain measurements during an impact event, Opt Lasers Eng, 140(2021)106502; doi. oi.org/10.1016/j.optlaseng.2020.106502.
  35. James S W, Tatam R P, Time-division-multiplexed 3D shearography, Proc SPIE, 3744(1999)394–403; doi.org/10.1117/12.357738.
  36. Groves R M, James S W, Tatam R P, Full surface strain measurement using shearography, Proc SPIE, 4448 (2001) 142–152; doi.org/10.1117/12.449371.
  37. Groves R M, James S W, Tatam R P, Multicomponent shearography using optical fiber imaging-bundles, Proc SPIE, 5144(2003)513–520; doi.org/10.1117/12.499784.
  38. Groves R M, James S W, Tatam R P, Multi-component pulsed-laser shearography using optical fiber imaging-bundles, Proc SPIE, 5191(2003)177–185; doi.org/10.1117/12.503738.
  39. Gao X, Wang Y, Dan X, Sia B, Yang L, Double imaging Mach–Zehnder spatial carrier digital shearography, J Mod Opt, 66(2019)153–160.
  40. Aebischer H A, Waldner S, Strain Distributions made visible with Image-shearing Speckle Pattern Interferometry, Opt Lasers Eng, 26(1997)407–420.
  41. Waldner S, Brem S, Compact shearography system for the measurement of 3D deformation, Proc SPIE, 3745 (1999)141–148; doi.org/10.1117/12.357771.
  42. Dymny G, Kujawinska M, Waldner S, Modified electronic speckle pattern shearing interferometry for simultaneous derivative map measurements, Proc SPIE, 3098(1997)204–210; doi.org/10.1117/12.281162.
  43. Siebert T, Schmitz B, New shearing setup for simultaneous measurement of two shear directions, Proc SPIE, 3637 (1999)225–230; doi.org/10.1117/12.343778.
  44. Groves R M, James S W, Tatam R P, Polarization – multiplexed and phase-stepped fiber optic shearography using laser wavelength modulation, Proc SPIE, 3745(1999)149–157; doi.org/10.1117/12.357773.
  45. Groves R M, James S W, Tatam R P, Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation, Meas Sci Technol, 11(2000)1389–1395.
  46. Xie X, Lee C P, Li J, Zhang B, Yang L, Polarized digital shearography for simultaneous dual shearing directions measurements, Rev Sci Instrum, 87(2016)083110; doi.org/10.1063/1.4961473.
  47. Kästle R, Hack E, Sennhauser U, Multiwavelength shearography for quantitative measurements of two-dimensional strain distributions, Appl Opt, 38(1999)96–100.
  48. Richoz G L, Schajer G S, Simultaneous two-axis shearographic interferometer using multiple wavelengths and a color camera, Opt Lasers Eng, 77(2016) 143–153.
  49. Wang Y, Gao X, Xie X, Wu S, Liu Y, Yang L, Simultaneous dual directional strain measurement using spatial phase-shift digital shearography, Opt Lasers Eng, 87(2016)197–203.
  50. Hooshmand-Ziafi H, Hassani K, Dashtdar M, Dual-sensitive spatial phase-shifting shearography based on a common-path configuration, Opt Eng, 58(2019) 114104; doi.org/10.1117/1.OE.58.11.114104.
  51. Zhao Q H, Chen W, Sun F, Yan P Z, Ye B, Wang Y, Simultaneous 3D measurement of deformation and its first derivative with speckle pattern interferometry and shearography, Appl Opt, 58(2019)8665–8672.
  52. Schulz B, Electronic speckle pattern interferometrie through shearography, Proc SPIE, 2358(1994)153–157; doi. doi.org/10.1117/12.185340.
  53. Chen Lou X, Complementary use of TV-holography/shearography and ultrasonic techniques for NDE of fiber-reinforced plastics, Proc SPIE, 2944(1996)238–246; doi.org/10.1117/12.259064.
  54. Mohan N K, Saldner H O, Molin N E, Recent application of TV holography and shearography, Proc SPIE, 2861 (1996)248–256; doi.org/10.1117/12.245173.
  55. Fomitchov P A, Krishnaswamy S, A compact dual-purpose camera for shearography and electronic speckle-pattern interferometry, Meas Sci Technol, 8(1997)581–583.
  56. Findeis D, Gryzagoridis J, A comparison of the capabilities of portable shearography and portable electronic speckle pattern interferometry, Proc SPIE, 5393(2004)41–49; doi.org/10.1117/12.539731.
  57. Groves R M, Fu S, James S W, Tatam R P, Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization, Opt Eng, 44(2005)025602; doi.org/10.1117/1.1842779.
  58. Bhaduri B, Mohan N K, Kothiyal M P, A dual-function ESPI system for the measurement of out-of- plane displacement and slope, Opt Lasers Eng, 44(2006)637–644.
  59. Bhaduri B, Mohan N K, Kothiyal M P, Sirohi R S, Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS), Opt Express, 14(2006)11598–11607.
  60. Xie X, Xu N, Sun J, Wang Y, Yang L, Simultaneous measurement of deformation and the first derivative with spatial phase-shift digital shearography, Opt Commun, 286(2013)277–281.
  61. Krzemień L, M Łukomski M, Kijowska A, Mierzejewska B, Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts, J Cult Herit, 16(2015)544–550.
  62. Zhao Q H, Zhang X, Wu S L, Wang H Q, Yan P Z, Wang Y H, A new multiplexed system for the simultaneous measurement of out-of-plane deformation and its first derivative, Opt Commun, 482 (2021)126602; doi.org/10.1016/j.optcom.2020.126602.
  63. Gu G, Pan Y, Qiu C, Zhu C, Improved depth characterization of internal defect using the fusion of shearography and speckle interferometry, Opt Laser Technol, 135(2021)106701; doi.org/10.1016/j.optlastec.2020.106701