Asian Journal of Physics Vol. 33, Nos 3 & 4 (2024) 239-251

On the optothermal properties of vanadium dioxide from the visible to the infrared

R Li Voti, M Bertolotti, G Leahu, E Petronijevic, G M Cesarini, M C Larciprete, M Centini, A Belardini, F Bovino, and C Sibilia
Università di Roma La Sapienza-Dipartimento SBAI, Via Scarpa 16, 00161 Roma, Italy

Dedicated to Professor Anna Consortini for her significant contributions and pioneering works in the field of atmospheric turbulence and her continuous commitment to promote optics at global level 


In this paper, we present an overview of results obtained during the last few years about optothermal properties of vanadium dioxide (VO2) films, realized with different methods of deposition, and a variety of substrates. VO2 is one of the most interesting materials exhibiting metal-insulator transitions, with a transition temperature of 340 K. We report the MIR and LWIR response of a number of VO2 films, in particular we report the behavior of the thermal emissivity during the phase transition. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.3-4.2024.239-251
Keywords: Infrared, Optothermal properties, Thermal emissivity, Vanadium dioxide.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Morin F J, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys Rev Lett, 3(1959)34.
  2. Kucharczyk D, Niklewski T, Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature, J Appl Cristallogr, 12(1979)370; doi.org/10.1107/S0021889879012711.
  3. Goodenough J B, The two components of the crystallographic transition in VO2, J Solid Chem, 3(1971)490–500.
  4. Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R, Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure, Thin Solid Films, 446(2004)287–295.
  5. Leahu G, Li Voti R, Sibilia C, Bertolotti M, Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate, Appl Phys Lett, 103(2013)231114; doi.org/10.1063/1.4838395.
  6. Shadrin E B, Il’inskii A V, Sidorov A I, Khanin S D, Size effects upon phase transitions in vanadium oxide nanocomposites, Phys Solid State, 52(2010)2426–2433.
  7. Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C, Khakani M A, Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films, Appl Phys Lett, 87(2005)051910; doi.org/10.1063/1.2001139.
  8. Narayan J, Bhosle V M, Phase transition and critical issues in structure-property correlations of vanadium oxide, J Appl Phys, 100(2006)103524; doi.org/10.1063/1.2384798.
  9. Benkahoul M, Chaker M, Margot L, Haddad É, Kruzelecky R, Wong B, Jamroz W, Poinas P, Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications, Sol Energy Mater Sol Cells, 93(2011) 3504–3508.
  10. Petronijevic E, Sibilia C, Thin films of phase change materials for light control of metamaterials in the optical and infrared spectral domain, Opt Quantum Electron, 52(2020)110; doi.org/10.1007/s11082-020-2237-6.
  11. Kurdyukov D A, Grudinkin S A, Nashchekin A V, Smirnov A N, Trofimova E Y, Yagovkina M A, Pevtsov A B, Golubev V G, Melt synthesis and structural properties of opal-V2O5 and opal-VO2 nanocomposites, Phys Solid State, 53(2011)428–434.
  12. Hendaoui A, Émond N, Chaker M, Haddad É, Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films, Appl Phys Lett, 102(2013)061107; doi.org/10.1063/1.4792277.
  13. Soltania M, Chaker M, Haddad E, Kruzelecky R, Margot J, Laou P, Paradis S, Fabrication of stationary micro-optical shutter based on semiconductor-to-metallic phase transition of W-doped VO2 active layer driven by an external voltage, J Vac Sci Technol, A26(2008)763–767.
  14. Ramirez-Rincon J A, Gomez-Heredia C L, Corvisier A, Ordonez-Miranda J, Girardeau T, Paumier F, Champeaux C, Dumas-Bouchiat F, Ezzahri Y, Joulain K, Ares O, Alvarado-Gil J J, Thermal hysteresis measurement of the VO2 dielectric function for its metal-insulator transition by visible-IR ellipsometry, J Appl Phys, 124(2018)195102; doi.org/10.1063/1.5049747.
  15. Cesarini G, Leahu G, Belardini A, Centini M, Li Voti R, Sibilia C, Quantitative evaluation of emission properties and thermal hysteresis in the mid-infrared for a single thin film of vanadium dioxide on a silicon substrate, Int J Therm Sci, 146(2019)106061; doi.org/10.1016/j.ijthermalsci.2019.106061.
  16. Cesca T, Scian C, Petronijevic E, Leahu G, Li Voti R, Cesarini G, Macaluso R, Mosca M, Sibilia C, Mattei G, Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire, Nanoscale, 12(2020)851–863.
  17. Li Voti R, Leahu G, Larciprete M C, Sibilia C, Bertolotti M, Photothermal characterization of thermochromic materials for tunable thermal devices, Int J Thermophys, 36(2015)1004–1015.
  18. Okada M, Takeyama A, Yamada Y, Thermal hysteresis control of VO2 (M) nanoparticles by Ti-F codoping, Nano-Struct. Nano-Objects, 20(2019)100395; doi.org/10.1016/j.nanoso.2019.10039.
  19. Liang J, Hu M, Kan Q, Liang X, Wang X, Li G, Chen H, Infrared transition properties of vanadium dioxide thin films across semiconductor-metal transition, Rare Metals, 30(2011)247–251.
  20. Mercuri F, Orazi N, Paoloni S, Cicero C, Zammit U, Pulsed thermography applied to the study of cultural heritage, Appl Sci, 7(2017)1010; doi.org/10.3390/app7101010.
  21. Orazi N, Mercuri F, Zammit U, Paoloni S, Marinelli M, Giuffredi A, Salerno C S, Thermographic analysis of bronze sculptures, Stud Conserv, 61(2016)236–244.
  22. Larciprete M C, Centini M, Paoloni S, Fratoddi I, Dereshgi S A, Tang K, Wu J, Aydin K, Adaptive tuning of infrared emission using VO2 thin films, Sci Rep, 10(2020)11544, doi.org/10.1038/s41598-020-68334-2.
  23. Larciprete M C, Centini M, Paoloni S, Dereshgi S. A, Tang K, Wu J, Aydin K, Effect of heating/cooling dynamics in the hysteresis loop and tunable IR emissivity of VO2 thin films, Opt Express, 28(2020)39203–39215.
  24. Li Voti R, Larciprete M C, Leahu G, Sibilia C, Bertolotti M, Optical response of multilayer thermochromic VO2-based structures, J Nanophotonics, 6(2012)061601; doi.org/10.1117/1.JNP.6.061601
  25. Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J, Aydin K, Sci Rep, 5(2015)13384; doi.org/10.1038/srep13384.
  26. Kats M A, Blanchard R, Zhang S, Genevet P, Ko C, Ramanathan S, Capasso F, Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance, Phys Rev X, 3(2013)041004; doi.10.1103/PhysRevX.3.041004.
  27. Leahu G, Li Voti R, Larciprete M C, Belardini A, Mura F, Fratoddi I, Sibilia C, Bertolotti M, AIP Conf Proc 1603 (2014)62–70.
  28. Li Voti R, Larciprete M C, Leahu G, Sibilia C, Bertolotti M, Optimization of thermochromic VO2 based structures with tunable thermal emissivity, J Appl Phys, 112(2012)034305; doi.org/10.1063/1.4739489.
  29. Malitson I H, A redetermination of some optical properties of calcium fluoride, Appl Opt, 2(1963)1103–1107.
  30. Palik E D (ed), Handbook of optical constants of solids, (Academic Press, Inc. New York), 1985.
  31. Foiles C L, Landolt and Bornstein, Group III: Condensed Matter, Vol.15b: Electronic Properties- Metals: Electronic Transport Phenomena-Electrical Resistivity, Thermoelectrical Power and Optical Properties, V. 43A11 (2012); doi. 10.1007/978-3-642-22847-6.
  32. Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Ho Choe J, Ahn Y H, Kim H.-T, Park N, Park Q-H, Ahn K, Kim D-S, Active Terahertz Nanoantennas Based on VO2 Phase Transition, Nano Lett, 10(2010)2064–2068.
  33. Petronijevic E, Centini M, Cesca T, Mattei G, Bovino F, Sibilia C, Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers, Opt Express, 27(2019)24260–24273.
  34. Cavalleri A, Tóth C, Siders C W, Squier J A, Ráksi F, Forget P, Kieffer J C, Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition, Phys Rev Lett, 87(2001)237401; doi.org/10.1103/PhysRevLett.87.237401.
  35. Petrov G I, Yakovlev V V, Squier J A, Nonlinear optical microscopy analysis of ultrafast phase transformation in vanadium dioxide, Opt Lett, 27(2002)655–657.
  36. Leroux C, Nihoul G, Tendeloo G, From VO2(V) to VO2(R): Theoretical structures of polymorphs and in situ electron microscopy, Phys Rev B, 57(1998)5111; doi.org/10.1103/PhysRevB.57.5111.
  37. Cavalleri A, Dekorsy Th, Chong H H W, Kieffer J C, Schoenlein R W, Evidence for a structurally-driven insulator-to-metal transition in : A view from the ultrafast timescale, Phys Rev B, 70(2004)161102; doi.org/10.1103/PhysRevB.70.161102.
  38. Lopez R, Haglund R F(Jr), Feldman L C, Optical nonlinearities in VO2 nanoparticles and thin films, Appl Phys Lett, 85(2004)5191–5193.
  39. Lysenko S, Vikhnin V, Fernandez F, Rua A, Liu H, Photoinduced insulator-to-metal phase transition in crystalline films and model of dielectric susceptibility, Phys Rev B, 75(2007)075109; doi.org/10.1103/PhysRevB.75.075109.