Asian Journal of Physics Vol. 30 Nos 10 & 11 (2021) 1601-1616

Optical wave and beam propagation in hyperbolic metamaterials comprising multilayer metallo-dielectric structures
Hammid Al-Ghezi, Rudra Gnawali, and Partha P Banerjee


Abstract

The unique optical properties of multilayered metamaterial structures can be used to improve optical devices such as transmission filters, and sensors etc. This review is a summary of our recent work in this area. First, we present a summary of our studies on optical waves in layered media utilizing the anisotropic transfer matrix approach, the Berreman method, and effective medium theory. Then, we use the anisotropic transfer matrix method to analyze optical propagation through metallo-dielectric nanolayers deposited on electrooptic materials. The Berreman technique is used to derive a transfer function of propagation to model beam propagation in hyperbolic metamaterials. Finally, an artificial neural network technique is used to design desired spectra such as Gaussian and super-Gaussian using multilayer metallo-dielectric structures. © Anita Publications. All rights reserved.
Keywords: Effective medium theory, Negative refraction, Hyperbolic metamaterials, Multilayer structures, Neural networks.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Barnes W L, Dereux A, Ebbesen T W, Surface plasmon subwavelength optics, Nature, 424(2003)824–830.
  2. Liang Y, Zhang S, Cao X, Lu Y, Xu T, Free-standing plasmonic metal-dielectricmetal bandpass filter with high transmission efficiency, Sci Rep, 7(2017)4357–4364.
  3. Wei B, Jian S, Metal–dielectric–metal waveguide-based broadband plasmonic filter in visible spectral range, J Nanophoton, 11(2017)046003; doi. 10.1117/1.JNP.11.046003.
  4. Kotb R, Ismail Y, Swillam M A, Nonlinear tuning techniques of plasmonic nano-filters, Opt Commun, 336(2015)306–314.
  5. Alipour A, Farmani A, Mir A, High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface, IEEE Sens J, 18(2018)7047–7054.
  6. Wang H, Plasmonic refractive index sensing using strongly coupled metal nanoantennas: Nonlocal limitations, Sci Rep, 8(2018)9589–9597.
  7. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y, Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator, Sensors, 18(2018)116–130.
  8. Wu J, Lang P, Chen X, Zhang R, A novel optical pressure sensor based on surface plasmon polariton resonator, J Mod Opt, 63(2016)219–223.
  9. Chen J, Zhang H, Liu G, Liu J, Liu Y, Tang L, Liu Z, High-quality temperature sensor based on the plasmonic resonant absorber, Plasmonics, 14(2019)279–283.
  10. Rakhshani M R, Mansouri-Birjandi M A, A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection, Photon Nanostruct: Fundam Appl, 32(2018) 28–34.
  11. Gnawali R, Kota A, Banerjee P, Haus J W, Reshetnyak V, Evans D R, A simplified transfer function approach to beam propagation in anisotropic metamaterials, Opt Commun, 461(2020)1–10.
  12. AL-Ghezi H, Gnawali R, Banerjee P P, Optical propagation through layered anisotropic materials using effective medium theory, Proc SPIE, 10912(2019)109121Q 1-7; doi. 10.1117/12.2515402.
  13. Gnawali R, Kota A, Banerjee P, Haus J W, Reshetnyak V, Evans D R, Berreman approach to optical propagation through anisotropic metamaterials: application to metallo-dielectric stacks, Opt Commun, 425(2018)71–79.
  14. AL-Ghezi H, Gnawali R, Banerjee P P, Optical propagation through multilayered anisotropic media, Proc SPIE 10743(2018)1074306-1; doi.10.1117/12.2322761.
  15. Jacob Z, Alekseyev L V, Narimanov E, Optical hyperlens: Far-field imaging beyond the diffraction limit, Opt Express, 14(2006) 8247–8256.
  16. Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L, A dielectric omnidirectional reflector, Science, 282(1998)1679–1682.
  17. Via B, Yang H, Enhanced tunability in ferroelectric composites through local field enhancement and the effect of disorder, J Appl Phys, 126(2019)044102; doi. 10.1063/1.5101053.
  18. Aspnes D E, Studna A A, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys Rev B, 27(1983)985–1009.
  19. Miller L S, Mullin J B (ed), Electronic Materials from Silicon to Organics, (Springer), 2012.
  20. Guo Z, Jiang H, Chena H, Hyperbolic metamaterials: From dispersion manipulation to applications, J Appl Phys, 127(2020)071101; doi.10.1063/1.5128679.
  21. Shekhar P, Atkinson J, Jacob Z, Hyperbolic metamaterials: fundamentals and applications, Nano Convergence. 1(2014)1-17; doi. 0.1186/s40580-014-0014-6.
  22. Gnawali R, Berreman Approach to Optical Propagation through Anisotropic Metamaterials, Ph D dissertation, University of Dayton, (2018).
  23. AL-Ghezi H, Gnawali R, Banerjee P P, Sun L, Slagle J, Evans D, A 2×2 anisotropic transfer matrix approach for optical propagation in uniaxial transmission filter, Opt Express, 28(2020)35761–35783.
  24. Heavens S, Optical Properties of Thin Films, (Butterworth), 1955.
  25. Lakhtakia A, Mackay T G, Classical electromagnetic model of surface states in topological insulators, J Nanophoton, 10(2016)033004; doi. 10.1117/1.JNP.10.033004.
  26. Banerjee P P, Gnawali R, Al-Ghezi H, Optical waves and beams in layered isotropic and anisotropic media, Proc SPIE, 11081(2019)1108104; 10.1117/12.2530583.
  27. Li Z, Palacios E, Butun S, Kocer H, Aydin K, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nature Commun, 2(2011)517–524.
  28. Thompson J R, Burrow J A, Shah P J, Slagle J, Harper E S, Rynbach A V, Agha I, Mills M S, Artificial neural network discovery of a switchable metasurface reflector, Opt Express, 28(2020)24629–24656.
  29. AL-Ghezi H, Optical Propagation in Anisotropic Metamaterials: Application to Analysis and Design of Metallo-Dielectric Filters, Ph D dissertation, University of Dayton, (2021).
  30. Gnawali R, Banerjee P P, Haus J W, Evans D R, Transfer function for electromagnetic propagation through anisotropic metamaterials, Proc SPIE, 10526(2018)1-6; doi. 10.1117/12.2292272.
  31. Yajie J, Supriya P, Martin A G, Realistic silver optical constants for plasmonics, Sci Rep, 6(2016)30605; doi. 10.1038/srep30605.
  32. Ratzsch S, Kley E-B, Tünnermann A, Szeghalmi A, Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide, Nanotechnology, 26(2015)024003; doi.10.1088/0957-4484/26/2/024003.
  33. Sun L, Murphy N, Jones J, Grant J, Jakubiak R, ZnO/Ag multilayer stack for induced transmission filters, Proc OSA MB, 4(2013)1–3.
  34. Christian S, Chetan R S, Matthias K, Tobias A F K, Mukundan T, Markus R, Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells, Sci Rep, 7(2917)42530; doi. 10.1038/srep42530.
  35. Karlik B, Olgac A V, Performance analysis of various activation functions in generalized MLP architectures of neural networks, Int J Artificial Intell Expert Syst, 1(2011)111-122.