Asian Journal of Physics Vol. 33, Nos 3 & 4 (2024) 185-196

Partially coherent nonplanar sources

J C G deSande1, R Martínez-Herrero2, G Piquero2, O Korotkova3, M Santarsiero4 and F Gori4
1ETSISde Telecomunicación, Universidad Politécnica de Madrid Campus Sur, 28031 Madrid, Spain
2Departamentode Óptica, Universidad Complutense de Madrid Ciudad Universitaria, 28040 Madrid, Spain
3Department of Physics, University of Miami 1320 Campo Sano Drive, Coral Gables, FL, 33146, USA
4Dipartimento di Ingegneria Industriale, Elettronicae Meccanica, Università Roma Tre ViaV. Volterra 62, 00146 Rome, Italy

Dedicated to Professor Anna Consortini for her significant contributions and pioneering works in the field of atmospheric turbulence and her continuous commitment to promote optics at global level 


Models for partially coherent spherical and cylindrical sources are presented, based on a decomposition into coherent modes of their cross-spectral densities. The primary coherence characteristics are computed both at the source surface and during propagation. Many examples with varying characteristics can be derived from the general expressions. Among others, an intriguing aspect of partially coherent spherical scalar sources is that, with a suitable choice of the weights of their component modes, the radiated field exhibits perfect radial coherence along any direction, while angular coherence is only partial. For the case of cylindrical symmetry, the study has been conducted for both scalar and vector sources. Interesting effects have been found concerning the evolution of the degree of coherence and the degree of polarization of the radiated field upon propagation. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.3-4.2024.185-196
Keywords: Nonplanar Sources; Coherence; Structured Light.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Mandel L, Wolf E, Optical Coherence and Quantum Optics, (Cambridge University Press), 1995.
  2. Korotkova O, Theoretical Statistical Optics, (Hackensack N J, World Scientifc), 2021.
  3. James D F V, Change of polarization of light beams on propagation in free space, J Opt Soc Am A,11(1994)1641–1643.
  4. Gori F, Santarsiero M, Vicalvi S, Borghi R, Guattari G, Beam coherence-polarization matrix, Pure Appl Opt, 7(1998)941–951.
  5. Tervo J, Azimuthal polarization and partial coherence, J Opt Soc Am A, 20(2003)1974–1980.
  6. Ramírez-Sánchez V, Piquero G, Santarsiero M, Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern, Opt Commun, 283(2010)4484–4489.
  7. Santarsiero M, Ramírez-Sánchez V, Borghi R, Partially correlated thin annular sources: the vectorial case, J Opt Soc Am A, 27(2010)1450–1456.
  8. Guo L,Tang Z, Liang C, Tan Z, Intensity and spatial correlation properties of tightly focused partially coherent radially polarized vortex beams, Opt Laser Technol, 43(2011)895–898.
  9. de Sande J C G, Santarsiero M, Piquero G, Gori F, Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer, Opt Express, 20(2012)27348–27360.
  10. Santarsiero M, de Sande J C G, Piquero G, Gori F, Coherence–polarization properties of fields radiated from transversely periodic electromagnetic sources, J Opt, 15(2013)055701; doi.10.1088/2040-8978/15/5/055701.
  11. Chen Y, Wang F, Liu L, Zhao C, Cai Y, Korotkova O, Generation and propagation of a partially coherent vector beam with special correlation functions, Phys Rev A, 89(2014)013801; doi.org/10.1103/PhysRevA.89.013801.
  12. Mei Z, Korotkova O, Electromagnetic Schell-model sources generating far fields with stable and flexible concentric rings profiles, Opt Express, 24(2016)5572–5583.
  13. Xu H.-F, Zhou Y, Wu H.-W, Chen H.-J, Sheng Z.-Q, Qu J, Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams, Opt Express, 26(2018)20076–20088.
  14. Senthilkumar M, Rajesh K, Udhayakumar M, Jaroszewicz Z, Mahadevan G, Focusing properties of spirally polarized sinh Gaussian beam, Opt Laser Technol, 111(2019)623–628.
  15. Hyde M W, Xiao X, Voelz D G, Generating electromagnetic nonuniformly correlated beams, Opt Lett, 44(2019)5719–5722.
  16. Yu J, Zhu X,Lin S, Wang F, Gbur G, Cai Y, Vector partially coherent beams with prescribed non-uniform correlation structure, Opt Lett, 45(2020)3824–3827.
  17. Hyde M W IV, Synthesizing general electromagnetic partially coherent sources from random, correlated complex screens, Optics, 1(2020)97–113.
  18. Tong R, Dong Z, Chen Y, Wang F, Cai Y, Setälä T, Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence, Opt Express, 28(2020)9713–9727.
  19. Zhu X,Yu J,Wang F,Chen Y,Cai Y,Korotkova O, Synthesis of vector nonuniformly correlated light beams by a single digital mirror device, Opt Lett , 46(2021)2996–2999.
  20. Martínez-Herrero R, Piquero G, Santarsiero M, Gori F, Gonzálezde Sande J C, A class of vectorial pseudo-Schell model sources with structured coherence and polarization, Opt Laser Technol, 152(2022)108079; org/10.1016/j.optlastec.2022.108079.
  21. Miller W, Symmetry and Separation of Variables, (Addison-Wesley),1977.
  22. Gori F, Korotkova O, Modal expansion for spherical homogeneous sources, Opt Commun, 282(2009)3859–3861.
  23. Borghi R, Gori F, Korotkova O, Santarsiero M, Propagation of cross-spectral densities from spherical sources, Opt Lett, 37(2012)3183–3185.
  24. Xu C, Abbas A, Wang L.-G, Zhu S.-Y, Zubairy M S, Wolf effect of partially coherent light fields in two-dimensional curved space, Phys Rev A, 97(2018)063827; doi.org/10.1103/PhysRevA.97.063827.
  25. Xu C, Wang L.-G, Theory of light propagation in arbitrary two-dimensional curved space, Photon Res, 9(2021)2486–2493.
  26. Shao Z, Wang Z, Propagation and transformation of a light beam on a curved surface, Opt Express, 29(2021)8626–8634.
  27. Schultheiss V H, Batz S, Peschel U, Light in curved two-dimensional space, Advances in Physics: X, 5(2020) 1759451; doi.10.1080/23746149.2020.1759451.
  28. Agarwal G S, Gbur G, Wolf E, Coherence properties of sunlight, Opt Lett, 29(2004)459–461.
  29. Divitt S, Novotny L,Spatial coherence of sunlight and its implications for light management in photovoltaics, Optica, 2(2015)95–103.
  30. Petrov E Y, Kudrin A V, Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium, Phys Rev Lett, 104(2010)190404; doi.org/10.1103/PhysRevLett.104.190404.
  31. Xiong H, Si L.-G, Huang P, Yang X, Analytic description of cylindrical electromagnetic wave propagation in an inhomogeneous nonlinear and nondispersive medium, Phys Rev E, 82(2010)057602; doi.org/10.1103/PhysRevE.82.057602.
  32. Hyde M W, Bogle A E, Havrilla M J, Scattering of a partially-coherent wave from a material circular cylinder, Opt Express, 21(2013)32327–32339.
  33. de Sande J C G, Korotkova O, Martínez-Herrero R, Santarsiero M, Piquero G, Failla A V, Gori F, Partially coherent spherical sources with spherical harmonic modes, J Opt Soc Am A,39(2022)C21–C28.
  34. Martínez-Herrero R, Korotkova O, Santarsiero M, Piquero G, deSande J C G, Failla A V, Gori F, Cylindrical partially coherent scalar sources, Opt Lett, 47(2022)5224–5227.
  35. Santarsiero M, deSande J C G, Korotkova O, Martínez-Herrero R, Piquero G, Gori F, Three-dimensional polarization of fields radiated by partially coherent electromagnetic cylindrical sources, Opt Lett, 48(2023)2476–2479.
  36. Santarsiero M, deSande J C G, Korotkova O, Martínez-Herrero R, Piquero G, Gori F, Partially Coherent Cylindrical Vector Sources, Photonics,10(2023)831; doi. 10.3390/photonics10070831.
  37. Setälä T, Tervo J, Friberg A T, Complete electromagnetic coherence in the space–frequency domain, Opt Lett,29(2004)328–330.
  38. Wolf E, Introduction to the Theory of Coherence and Polarization of Light, (Cambridge University Press), 2007.
  39. Setälä T, Shevchenko A, Kaivola M, Friberg A T, Degreeofpolarizationforoptical nearfelds, Phys Rev E, 66(2002)016615; doi.org/10.1103/PhysRevE.66.016615.
  40. Ellis J, Dogariu A, Ponomarenko S, Wolf E, Degree of polarization of statistically stationary electromagnetic fields, Opt Commun, 248(2005)333–337.
  41. Auñón J M, Nieto-Vesperinas M, On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources, Opt Lett, 38(2013)58–60.
  42. Luis A, Degree of polarization for three-dimensional fields as a distance between correlation matrices, Opt Commun, 253(2005)10–14.
  43. Gil J J, Ossikovski R, Polarized Light and the Mueller Matrix Approach, (Boca Raton: CRC Press, Taylor & Francis Group), 2016.
  44. Tervo J, Setälä T, Friberg A T, Degree of coherence for electromagnetic fields, Opt Express,11(2003)1137–1143.
  45. Korotkova O, Wolf E, Spectral degree of coherence of a random three-dimensional electromagnetic field, J Opt Soc Am A, 21(2004)2382–2385.
  46. Gori F, Santarsiero M, Borghi R, Maximizing Young’s fringe visibility through reversible optical transformations, Opt Lett, 32(2007)588–590.
  47. Martínez-Herrero R, Mejías P M, Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields, Opt Lett, 32(2007)1471–1473.
  48. Luis A, Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices, J Opt Soc Am A, 24(2007)1063–1068.
  49. Martínez-Herrero R, Mejías P M, Piquero G, Characterization of partially polarized light fields, (Springer Series in Optical Science, Springer), 2009.
  50. Gbur G J, Mathematical Methods for Optical Physics and Engineering, (NewYork: Cambridge University Press), 2011.
  51. Arfken G B, Weberr H J, Mathematical Methods for Physicists, (New York:Elsevier, Academic Press), 6th edn, 2005.
  52. Papas C H, Theory of Electromagnetic Wave Propagation, (NewYork:Dover), 2003.
  53. Panofsky WKH, Philips M, Classical Electricity and Magnetism, (NewYork: Dover),2005.
  54. Gori F, Santarsiero M, Simon R, Piquero G, Borghi R, Guattar G, Coherent-mode decomposition of partially polarized, partially coherent sources, J Opt Soc Am A, 20(2003)78–84.
  55. Tervo J, Setälä T, Friberg A T, Theory of partially coherent electromagnetic fields in the space–frequency domain, J Opt Soc Am A, 21(2004)2205–2215.