Editor-in-Chief : V.K. Rastogi
Asian Journal of Physics | Vol. 33, No 11 (2024) 667-681 |
Quantum chaos and macroscopic realism as no-signaling in time
Manish Ramchander1
Institute of Mathematical Sciences, Taramani, Chennai-60 0113, India.
Arul Lakshminarayan2
Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
Macroscopic realism is a set of assumptions about how we experience the world at a classical level. While the Leggett-Garg inequalities are temporal correlations that are violated by quantum systems not obeying such macrorealism, the no-signaling in time condition is also a necessary condition. This compares measurement outcomes with and without prior measurements. As dynamics and correlations play a central role in these measures, this paper explores the effects of regular versus chaotic dynamics on the violations of macroscopic realism. We observe a close connection between a 3 point out-of-time-order correlator and the conditional probabilities of measurement, and we find unmistakable imprints of chaos on the violations of macrorealism. We provide qualitative semiclassical reasoning for the numerical results involving a kicked top, and for two important initial states that behave very differently. © Anita Publications. All rights reserved.
Doi:
Keywords: Macrorealism, Leggett-Garg inequalities, Quantum chaos
Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve
References
- Leggett A J, Garg A, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys Rev Lett, 54(1985)857–860.
- Leggett A J, Testing the limits of quantummechanics: motivation, state of play, prospects, J Phys: Condens Matter, 14(2002)R415; doi. 10.1088/0953-8984/14/15/201.
- Kofler J, Brukner Č, Condition for macroscopic realism beyond the Leggett-Garg inequalities, Phys Rev A, 87(2013)052115; doi. doi.org/10.1103/PhysRevA.87.052115.
- Emary C, Lambert N, Nori F, Leggett–garg inequalities, Rep Prog Phys, 77(2013)016001; doi.10.1088/0034-4885/77/1/016001.
- Clemente L, Kofler J, Necessary and sufficient conditions for macroscopic realism fromquantummechanics, Phys Rev A, 91(2015)062103; doi.org/10.1103/PhysRevA.91.062103.
- Clemente L, Kofler J, No fine theorem for macrorealism: Limitations of the Leggett-Garg inequality, Phys Rev Lett, 116(2016)150401; doi.org/10.1103/PhysRevLett.116.150401.
- Halliwell J J, Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time, Phys Rev A, 96(2017)012121; doi. doi.org/10.1103/PhysRevA.96.012121.
- D’Alessio L, Kafri Y, Polkovnikov A, Rigol M, Adv Phys, 65(2016)239; org/10.1080/00018732.2016.1198134.
- Strasberg P, Reinhard T E, Schindler J, First principles numerical demonstration of emergent decoherent histories Phys Rev X, 14(2024)041027;doi.org/10.1103/PhysRevX.14.041027.
- Fröwis F, Sekatski P, Dür W, Gisin N, Sangouard N, Macroscopic quantum states: Measures, fragility, and implementations, Rev Mod Phys, 90(2018)025004; doi.org/10.1103/RevModPhys.90.025004.
- Haake F, Kús M, Scharf R, Classical and quantum chaos for a kicked top, Zeitschrift für Physik B, Condensed Matter, 65(1987)381–395.
- Haake F, Quantum Signatures of Chaos, (Spring-Verlag, Berlin), 1991.
- Peres A, Quantum Theory: Concepts and Methods, (Kluwer Academic Publishers, New York), 2002.
- Ghose S, Sanders B C, Entanglement dynamics in chaotic systems, Phys Rev A, 70(2004)062315; doi.org/10.1103/PhysRevA.70.062315.
- Chaudhury S, Smith A, Anderson B E, Ghose S, Jessen P S, Quantum signatures of chaos in a kicked top, Nature, 461(2009)768–771.
- Neill C, Roushan P, Fang M, Chen Y, Kolodrubetz M, Chen Z, Megrant A, Barends R, Campbell B, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Mutus J, O’Malley P J J, Quintana C, Sank D, Vainsencher A, Wenner J, White C, Polkovnikov A, Martinis J M, Ergodic dynamics and thermalization in an isolated quantum system, Nat Phys, 12(2016)1037–1041.
- Dogra S, Madhok V, Lakshminarayan A Quantum signatures of chaos, thermalization, and tunneling in the exactly solvable few-body kicked top, Phys Rev E, 99(2019)062217; doi.org/10.1103/PhysRevE.99.062217.
- Kalaga J K, Kowalewska-Kudlaszyk A, Nowotarski M, Leoński W, Violation of leggett–garg inequalities in a kerr-type chaotic system, Photonics, 8(2021); doi.10.3390/photonics8010020.
- v d Vaart A W, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, (Cambridge University Press), 1998.
- Ruebeck J B, Lin J, Pattanayak A K, Entanglement and its relationship to classical dynamics, Phys Rev E, 95(2017)062222; doi.org/10.1103/PhysRevE.95.062222.
- Dakna M, Clausen J, Knoll L, Welsch D G, Generating and monitoring Schrodinger cats in conditional measurement on beam splitter, Acta Phys Slov, 48(1998)207–220.
- Hamazaki R, Fujimoto K, Ueda M, Operator noncommutativity and irreversibility in quantum chaos, (2018), arXiv:1807.02360 [cond-mat.stat-mech].
- Jalabert R A, García-Mata, Wisniacki D A, Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems, Phys Rev E, 98 (2018)062218; doi.org/10.1103/PhysRevE.98.062218.
- Xu S, Swingle B, Scrambling dynamics and out-of-time-ordered correlators in quantum many-body systems, PRX Quantum, 5(2024)010201; doi.org/10.1103/PRXQuantum.5.010201.
- Dakna M, Clausen J, Knöll L, Welsch D G, Generation of arbitrary quantum states of traveling fields, Phys Rev A, 59(1999)1658; doi.org/10.1103/PhysRevA.59.1658.
- For a uniform random variable tβ, such a time average correctly gives the ensemble average for dn. Same holds for higher moments.
- Glauber R J, Haake F, Superradiant pulses and directed angular momentum states, Phys Rev A, 13(1976)357; doi.org/10.1103/PhysRevA.13.357 .
- Radcliffe J M, Some properties of coherent spin states, J Phys. A Math Gen, 4(1971)313; doi.10.1088/0305-4470/4/3/009.
- Ghose S, Stock R, Jessen P, Lal R, Silberfarb A, Chaos, entanglement, and decoherence in the quantum kicked top, Phys Rev A, 78(2008)042318; doi.org/10.1103/PhysRevA.78.042318.
- Berry M V, Evolution of semiclassical quantum states in phase space, J Phys. A Math Gen, 12(1979)625; doi. 10.1088/0305-4470/12/5/012.
- Chirikov B, F. Izrailev, Shepelyansky D, Quantum chaos: localization vs. ergodicity, Physica D: Nonlinear Phenomena, 33(1988)77–88.
- Karkuszewski Z P, Zakrzewski J, Zurek W H, Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times, Phys Rev A, 65(2002)042113; doi.org/10.1103/PhysRevA.65.042113.
- Sakurai J J, Napolitano J, Modern Quantum Mechanics, 2nd edn, (Cambridge University Press), 2017.