Asian Journal of Physics  Vol. 31 No 2, 2022, 315-340

Raman spectroscopy in multidisciplinary approaches applied to drug design
Maria Paula M Marques


Abstract

This paper addresses the applications of Raman spectroscopy to the development of novel metal-based anticancer drugs, within the research activity carried out in the last few years at the Molecular Physical-Chemistry R&D Unit of the University of Coimbra (Portugal). Raman spectroscopy, coupled to other complementary techniques such as infrared and inelastic neutron scattering spectroscopies, was used to characterize novel metallo drugs and to probe their interaction with key biomolecules and their impact on cellular metabolism and intracellular water (pharmacokinetic and pharmacodynamic profiles). Platinum and palladium complexes with poly amines were investigated, comprising more than one metal center and displaying a non-conventional inter play with DNA. New drug targets were explored, aiming at a multitarget approach with a view to improve chemotherapeutic outcome. © Anita Publications. All rights reserved.
Keywords: Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), Inelastic neutron scattering spectroscopy (INS), Quasi-elastic neutron scattering spectroscopy (QENS), Anticancer drugs, Human cancer cells.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. All Cancers – Number of deaths in 2020, both sexes, all ages. https://gco.iarc.fr/today/data/factsheets/cancers/39- All-cancers-fact-sheet.pdf; (accessed on October 2021).
  2. Ghosh H, Cisplatin: The First Metal Based Anticancer Drug, Bioorg Chem, 88(2019)102925; doi.org/10.1016/j.bioorg.2019.102925.
  3. Gomes C A, Cruz T G, Andrade J L, Milhazes N, Borges F, Marques MPM, Anticancer Activity of Phenolic Acids of Natural or Synthetic Origin: A Structure-Activity Study, J Med Chem, 46(2003)5395–5401.
  4. Fresco P, Borges F, Diniz C, Marques M P M, New Insights on the Anticancer Properties of Dietary Polyphenols, Med Res Rev, 26(2006)747–766.
  5. Fresco P, Borges F, Marques M P M, Diniz C, The Anticancer Properties of Dietary Polyphenols and its Relation with Apoptosis, Curr Pharm Design, 16(2010)114–134.
  6. Singh S, Sharma B, Kanwar S S, Kumar A, Lead Phytochemicals for Anticancer Drug Development, Front Plant Sci, 7(2016)1667; doi.org/10.3389/fpls.2016.01667.
  7. Medeiros P S C, Batista de Carvalho A L M, Ruano C, Otero J C, Marques M P M, Raman Microspectroscopy for Probing the Impact of a Dietary Antioxidant on Human Breast Cancer Cells, Food & Function,7(2016)2800; doi.org/10.1039/C6FO00209A.
  8. Batista de Carvalho A L M, Caselli F, Rodrigues V, Paiva-Martins F, Marques M P M, Antiproliferative Avtivity of Olive Oil Phenolics Against Human Melan oma Cells, Lett Drug Design Discov, 14(2017)1053-1059.
  9. Medeiros P S C, Batistade Carvalho A L M, Ruano C, Otero J C, Marques M P M, The Impact of Antioxidants from the Dieton Breast Cancer Cells Monitores by Raman Microspectroscopy, Lett Drug Design Discov, 2(2018)127-137.
  10. Chikara S, Nagaprashantha L D, Singhal J, Horne D, Awasthi S, Singhal S S, Oxidative Stress and Dietary Phytochemicals: Role in Cancer Chemoprevention and Treatment, Cancer Lett, 413(2018)122–134.
  11. Basak L, Houri M, El Achy S, Kamel S, Refaat T, Cancer active targeting by nanoparticles: A comprehensive review of riterature, J Cancer Res Clin Oncol. 141(2015)769-784.
  12. Kenny R G, Marmion C J, Toward multi-targeted platinum and ruthenium drugs – A new paradigm in cancer drug treatment regimens?, Chem Rev, 119(2019)1058-1137.
  13. Anthony E J, Bolitho E M, Bridgewater H E, Carter O W L, Donnelly J M, Imberti C, Lant E C, Lermyte F, Needham R J, Palau M, Sadler P J, Shi H, Wang F-X, Zhang W-Y, Zhang Z, Metallodrugs are Unique: Opportunities and Challenges of Discovery and Development, Chem Sci, 11(2020)12888–12917.
  14. Ortega E, Vigueras G, Ballester F J, Ruiz J,Targeting Translation: A Promising Strategy for Anticancer Metallodrugs, Coord Chem Rev, 446(2021)214129; doi.org/10.1016/j.ccr.2021.214129.
  15. Allardyce C S, Dorcier A, Scolaro C, Dyson P J, Development of Organometallic (organo-transition metal)Pharmaceuticals, Appl Organometal Chem, 19(2005)1–10.
  16. Dyson P J, Sava G, Metal-based Antitumour Drugs in the post-Genomic Era, Dalton Trans, (2006)1929–1933; doi: 10.1039/B601840H.
  17. Fricker S P, Metal Based Drugs: from Serendipity to Design, Dalton Trans, (2007)4903–4917; doi.org/10.1039/B705551J.
  18. Hann on M J, Metal-based Anticancer Drugs: From a Past Anchored in Platinum Chemistry to a post-Genomic Future of Diverse Chemistry and Biology, Pure Appl Chem, 79(2007)2243–2261.
  19. Rijt S H, Sadler P J, Current Applications and Future Potential for Bioinorganic Chemistry in the Development of Anticancer Drugs, Drug Discov Today, 14(2009)1089–1097.
  20. Garbutcheon-Singh K B, Grant MP, Harper BW, Krause-Heuer AM, Manohar M, Orkey N, Aldrich-Wright JR, Transition Metal Based Anticancer drugs, Curr Topics Med Chem, 11(2011)521–542.
  21. Muhammad N, Guo Z, Metal-based Anticancer Chemotherapeutic Agents, Curr Opinion Chem Biol, 19(2014)144–153.
  22. Mjos K D, Orvig C, Metallodrugs in Medicinal Inorganic Chemistry, Chem Rev, 114(2014)4540–4563.
  23. Allardyce C S, Dyson P J, Metal-based Drugs that Break the Rules, Dalton Trans, 45(2016)3201–3209.
  24. Ndagi U, Mhlongo N, Soliman M E, Metal Complexes in Cancer Therapy – an Update from Drug Design Perspective, Drug Design, Development and Therapy, 11(2017)599–616.
  25. Tewabe A, Abate A, Tamrie M, Seyfu A, Siraj EA,Targeted drug Delivery–from Magic Bullet to Nanomedicine: Principles, Challenges and Future Perspectives, J Multidisciplinary Healthcare, 14(2021)1711–1724.
  26. Palermo G, Spinello A, Saha A, Magistrato A, Frontiers of Metal-coordinating Drug Design, Expert Opin Drug Discov, 16(2021)497–511.
  27. Cirri D, Bartoli F, Pratesi A, Baglini E, Barresi E, Marzo T, Strategies for the Improvement of Metal-based Chemotherapeutic Treatments, Biomedicines, 9(2021)504; doi.org/10.3390/biomedicines9050504.
  28. Köpf H, Köpf-Maier P, Titanocene Dichloride–the first Metallocene with cancerostatic activity, Angew Chem Int Ed Eng, 18(1979)1521; https://doi.org/10.1002/anie.197904771.
  29. Ott I, On the Medicinal Chemistry of Gold Complexes as Anticancer Drugs, Coord Chem Rev, 253(2009)1670–1681.
  30. Komeda S, Casini A, Next-Generation Anticancer Metallodrugs, Curr Top Med Chem, 12(2012)219–235.
  31. Marques J, Fernandes J A, Paz F A A, Marques M P M, Braga S S, Isolation, crystal structure, and cytotoxicity on osteosarcoma of a ruthenium (III) complex with coordinated acetonitrile, J Coord Chem, 65(2012)2489; doi. org/10.1080/00958972.2012.696624.
  32. Barry N P E, Sadler P J, Exploration of the Medical Periodic Table: Towards New Targets, Chem Comm, 49(2013)5106–5131.
  33. Bruno P M, Liu Y, Park G Y, Murai J, Koch C E, Eisen T J, Pritchard J R, Pommier Y, Lippard S J, Hemann M T, A Subset of Platinum-containing Chemotherapeutic Agents Kills Cells by Inducing Ribosome Biogenesis Stress, Nature Medicine, 23(2017)461–471.
  34. Pratesi A, Cirri D, Ciofi L, Messori L, Reactions of Auranofin and its Pseudohalide derivatives with Serum Albumin Investigated Through ESI-Q-TOF MS, Inorg Chem, 57(2018)10507–10510.
  35. Yeo C I, Ooi K K,Tiekink E R T, Gold-based Medicine: A Paradigm Shift in Anti-Cancer Therapy?, Molecules, 23(2018)1410; doi.org/10.3390/molecules23061410.
  36. Bergamo A, Dyson P J, Sava G, The Mechanism of Tumour Cell Death by Metal-based Anticancer Drugs is not Only a Matter of DNA Interactions, Coord Chem Rev, 360(2018)17–33.
  37. Marques J, Silva A M S, Marques M P M, Braga S S, Ruthenium(II) Trithiacyclononane Complexes of 7,3´,4´- Trihydroxyflavone, Chrysin and Tectochrysin: Synthesis, Characterisation and Cytotoxic Evaluation, Inorg Chim Acta, 488(2019)71–79.
  38. Giorgio A, Merlino A, Gold Metalation of Proteins: Structural Studies, Coord Chem Rev, 407(2020)213175; doi.org/10.1016/j.ccr.2019.213175.
  39. Binacchi F, Guarra F, Cirri D, Marzo T, Pratesi A, Messori L, Gabbiani C, Biver T, On the Different Mode of Action of Au(I)/Ag(I)-NHC bis-Anthracenyl Complexes Towards Selected Target Biomolecules, Molecules, 25(2020)5446; doi.org/10.3390/molecules25225446.
  40. Guarra F, Pratesi A, Gabbiani C, Biver T, A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes, J Inorg Biochem, 217(2021)111355; doi.org/10.1016/j.jinorgbio.2021.111355.
  41. Farrell N P, Multi-platinum Anti-cancer Agents. Substitution-inert Compounds for Tumor Selectivity and New Targets, Chem Soc Rev, 44(2015)8773–8785.
  42. Kang X, Xiao H-H, Song H-Q, Jing X-B, Yan L-S, Qi R-G, Advances in Drug Delivery System for Platinum Agents Based Combination Therapy, Cancer Biol Med, 12(2015)362–374.
  43. Johnstone T C, Suntharalingham K, Lippard S J, The Next Generation of Platinum Drugs:Targeted Pt(II)Agents, Nanoparticle Delivery and Pt(IV) Prodrugs, Chem Rev, 116(2016)3436-3486.
  44. Rosenberg B, Vancamp L, Krigas T, Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode, Nature, 205(1965)698–699.
  45. Rosenberg B, Vancamp L, Trosko J E, Mansour V H, Platinum Compounds: a New Class of Potent Antitumour Agents, Nature, 222(1969)385–386.
  46. Galanski M, Jakupec M A, Keppler B K,Update of the Preclinical Situation of Anticancer Platinum Complexes: Novel Design Strategies and Innovative Analytical Approaches, Curr Med Chem,12(2005)2094.
  47. Wheate N J, Walker S, Craig G E, Oun R, The Status of Platinum Anticancer Drugs in the Clinic and in Clinical Trials, Dalton Trans, 39(2010)8113–8127.
  48. Matos C S, Batista de Carvalho A L M, Lopes R P, Marques M P M, New Strategies Against Prostate Cancer – Pt(II)-based Chemotherapy, Curr Med Chem,19(2012)4678–4687.
  49. Dasari S, Tchounwou P B, Cisplatin in Cancer Therapy: Molecular Mechanisms of Action, Eur J Pharm,740(2014)364–378.
  50. Marques M P M, Batista de Carvalho A L M, Garcia Sakai V, Hatter L, Batista de Carvalho L A E, Intracellular Water – An Overlooked Drug Target? Cisplatin Impact in Cancer Cells Probed by Neutrons, Phys Chem Chem Phys, 19(2017)2702–2713.
  51. Batista de Carvalho A L M, Mamede A P, Dopplapudi A, Garcia Sakai V, Doherty J, Frogley M, Cinque G, Gardner P, Gianolio D, Batista de Carvalho L A E, Marques M P M, Anticancer Drug Impact on DNA–A Study by neutron Spectroscopy Coupled with Synchrotron-based FTIR and EXAFS, Phys Chem Chem Phys, 21(2019)4162–4175.
  52. Marques M P M, Batista de Carvalho A L M, Mamede A P, Dopplapudi A, Rudic S, Tyagi M, Garcia Sakai V, Batista de Carvalho LAE, A New Look Into the Mode of Action of Metal-based Anticancer Drugs, Molecules, 25(2020)246; doi.org/10.3390/molecules25020246.
  53. Batista de Carvalho L A E, Mamede A P, Batista de Carvalho A L M, Marques J, Cinque G, Rudic S, Marques M P M, Metallodrug-Protein Interaction Probed by Synchrotron Terahertz and Neutron Scattering Spectroscopy, Biophys J, 120(2021)3070–3078.
  54. Messori L, Merlino A, Cisplatin Binding to Proteins: A Structural Perspective, Coord Chem Rev, 315(2016)67–89.
  55. Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M, Unexpected Therapeutic Effects of Cisplatin, Metallomics, 11(2019)1182–1199.
  56. Marques M P M, Batista de Carvalho A L M, Mamede A P, Rudic S, Dopplapudi A, Garcia Sakai V, Batista de Carvalho L A E, Intracellular Water as a Mediator of Anticancer Drug Action, Int Rev Phys Chem, 39(2020)67–81.
  57. Florea A-M, Busselberg D, Cisplatin as an Anti-tumor Drug:Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects, Cancers, 3(2011)1351–1371.
  58. Taylor M, Filby A, Health Impact Analysis of Cisplatin, Carboplatin and Oxaliplatin, Johnson Matthey Technol Rev, 61(2017)32; doi.org/10.1595/205651317X693642.    .
  59. Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F, Advances in Toxicological Research of the Anticancer Drug Cisplatin, Chem Res Toxicol, 32(2019)1469–1486.
  60. Martinho N, Santos T C B, Florindo H F, Silva L C, Cisplatin-Membrane Interactions and their Influence on Platinum Complexes Activity and Toxicity, Front Physiol, 9(2019)1898; doi.org/10.3389/fphys.2018.01898.
  61. Meggers E, Targeting Proteins with Metal Complexes, Chem Comm, (2009)1001; doi.org/10.1039/B813568A.
  62. Marques M P M, Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor, International Scholarly Research Network – ISRN Spectroscopy, 2013(2013)287353; doi.org/10.1155/2013/287353.
  63. Wang X, Guo Z, Targeting and Delivery of Platinum-based Anticancer Drugs, Chem Soc Rev, 42(2013)202-224.
  64. Chen W-H, Luo G-F, Zhang X-Z, Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials, Adv Mater, 31(2019)1802725; doi.org/10.1002/adma.201802725.
  65. Boulikas T, Clinical Overview on LipoplatinTM: A Successful Liposomal Formulation of Cisplatin, Exp Opin Inv Drugs, 18(2009)1197-1218.
  66. Nowotnik D P, AP5346 (ProLindacTM), A DACH Platinum Polymer Conjugate in Phase II Trials Against Ovarian Cancer, Curr Bioactive Comp, 7(2011)21–26.
  67. Khan B T, Najmuddin K, Shamsuddin S, Annapoorna K, Bhatt J,Synthesis, Antimicrobial, and Antitumor Activity of a Series of Palladium (II) Mixed Ligand Complexes, J Inorg Biochem, 44(1991)55–63.
  68. Abu-Surrah A S, Al-Sa´doni H H, Abdalla M Y, Palladium-based Chemotherapeutic Agents: Routes Toward Complexes with Good Antitumor Activity, Cancer Therapy, 6(2008)1-10.
  69. Gao E, liu C, Zhu M, Lin H, Wu Q, Liu L, Current development of Pd (II) Complexes as Potential Antitumor Agents, Anti- Cancer Agents, Med Chem, 9(2009)356–368.
  70. Alam M N, Huq F, Comprehensive Review on Tumour Active Palladium Compounds and Structure-Activity Relationships, Coord Chem Rev, 316(2016)36–67.
  71. Carneiro T J, Martins A S, Marques M P M, Gil A M, Metabolic Aspects of Palladium (II) Potential Anti-Cancer Drugs, Frontiers Oncol, 10(2020)590970; doi.org/10.3389/fonc.2020.590970.
  72. Corduneanu O, Chiorcea-Paquim A-M, Diculescu V, Fiuza SM, Marques MPM, Oliveira-Brett AM, DNA Interaction with Palladium Chelates of Biogenic Polyamines Using Atomic Force Microscopy and Voltammetric Characterization, Anal Chem, 82(2010)1245–1252.
  73. Corduneanu O, Chiorcea-Paquim A-M, Fiuza SM, Marques MPM, Oliveira-Brett AM, Polynuclear Palladium Complexes with Biogenic Polyamines: AFM and Voltammetric Characterization, Bioelectrochem, 78(2010)97–105.
  74. Tummala R, Diegelman P, Fiuza S M, Batista de Carvalho LAE, Marques M P M, Kramer D L, Clark K, Vujcic S, Porter C, Pendyala L, Characterization of Pt-, Pd-Spermine Complexes for their Effect on Polyamine Pathway and Cisplatin Resistance in A2780 Ovarian Carcinoma Cells, Oncol Rep, 24(2010)15–24.
  75. Ulukaya E, Ari F, Dimas K, Sarimahmut M, Guney E, Sakellaridis N, Yilmaz V T, Cell Death-inducing effect of Novel Palladium(II) and Platinum(II) Complexes on Non-small Cell Lung Cancer Cells In Vitro, J Cancer Res Clin Oncol, 137(2011)1425; doi.org/10.1007/s00432-011-1021-1.
  76. Fiuza S M, Holy J, Batista de Carvalho L A E, Marques M P M, Biologic Activity of a Dinuclear Pd(II)-Spermine Complex Toward Human Breast Cancer, Chem Biol Drug Des, 77(2011)477–488.
  77. Silva T M, Andersson S, Sukumaran S K, Marques M P M, Persson L, Oredsson S, Norspermidine and Novel Pd(II) and Pt(II) Polynuclear Complexes of Norspermidine as Potential Antineoplastic Agents Against Breast Cancer, PLOS ONE, 8(2013)e55651; /doi.org/10.1371/journal.pone.0055651.
  78. Silva T M, Fiuza S M, Marques M P M, Persson L, Oredsson S, Increased Breast Cancer Cell Toxicity by Palladination of the Polyamine Analogue N1, N11bis(ethyl) Norspermine, Amino Acids, 46(2014)339-352.
  79. Fiuza S M, Amado A M, Parker S F, Marques M P M, Batistade Carvalho L A E, Conformational Insights and Vibrational Study of a Promising Anticancer Agent: The Role of the Ligand in Pd(II)-Amine Complexes, New J Chem, 39(2015)6274–6283.
  80. Batistade Carvalho A L M, Medeiros P S C, Costa F M, Ribeiro V P, Sousa J B, Diniz C, Marques M P M, Anti-invasive and Anti- proliferative Synergism Between Docetaxel and a Polynuclear Pd-Spermine Agent, PLOS ONE, 11(2016)e0167218; doi.org/10.1371/journal.pone.0167218.
  81. Lamego I, Marques M P M, Duarte I F, Martins A S, Oliveira H, Gil A M, Impact of the Pd2Spermine Chelateon Osteosarcoma Metabolism: An NMR Matabolomics Study, J Proteome Res, 16(2017)1773-1783.
  82. Vojtek M, Marques M P M, Ferreira IMPLVO, Mota-Filipe H, Diniz C, Anticancer Activity of Palladium-based Complexes Against Triple-negative Breast Cancer, Drug Discov Today, 24(2019)1044–1058.
  83. Vojtek M, Pinto E, Gonçalves-Monteiro S, Almeida A, Marques M P M, Mota-Filipe H, Ferreira IMPLVO, Diniz C, Fast and Reliable ICP-MS Quantification of Palladium-based Drugs in Animal Pharmacokinetic and Biodistribution Studies, Anal Methods,12(2020)4806–4812.
  84. Martins A S, Batista de Carvalho ALM, Lamego I, Marques M P M, Gil A M, Cytotoxicity of Platinum and Palladium Chelates Against Osteosarcoma, Chemistry Select, 5(2020)5993-6000.
  85. Vojtek M, Gonçalves-Monteiro S, Pinto E, Kalivodova S, Almeida A, Marques M P M, Batista de Carvalho ALM, Martins C M, Mota-Filipe H, Ferreira IMPLVO, Diniz C, Preclinical Pharmacokinetics and Biodistribution of Anticancer Dinuclear Palladium(II)-Spermine Complex (Pd2Spm) in Mice, Pharmaceuticals, 14(2021)173; doi.org/10.3390/ph14020173.
  86. Martins A S, Batista de Carvalho A L M, Marques M P M, Gil A M, Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs, Molecules, 26(2021)4805; doi.org/10.3390/molecules26164805.
  87. Carneiro T J, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batistade Carvalho A L M, Marques M P M, Gil A M, Novel Insights into Mice Mulçti-Organ Metabolism upon Exposure to a Potential Anticancer Pd(II)-Agent, Metabolites,11(2021)114; doi.org/10.3390/metabo11020114.
  88. Harris A L, Yang X, Hegmans A, Povirk L, Ryan J J, Kelland L, Farrell P, Synthesis, Characterization and Cytotoxicity of a Novel Highly Charged Trinuclear Platinum Compound. Enhancement of Cellular Uptake with Charge, Inorg Chem, 44(2005)9598–9600.
  89. Rosa N M P, Ferreira F H C, Farrell N P, Costa L A S, Triplatin N C and Biomolecules:Building Models Based on Non-covalent Interactions, Front Chem, 7(2019)307; doi.org/10.3389/fchem.2019.00307.
  90. Azzouzi A-R, Lebdai S, Benzaghou F, Stief C,Vascular-targeted Phtodynamic Therapy with TOOKAD® Soluble in Localized Prostate Cancer: Standardization of the Procedure, World J Urol, 33(2015)937–944.
  91. Azzouzi A-R,Vincendeau S, Barret E, Cicco A, Kleinclauss F, vander Poel H G, Stief C G, Rassweiler J, Salomon G, Solsona E, Alcaraz A, Tammela T T, Rosario D J, Gomez-Veiga F, Ahlgren G, Benzaghou F, Gaillac B, Amzal B, Debruyne F M J, Fromont G, Gratzke C, Emberton M, Padeliporfin Vascular-targeted Photodynamic Therapy versus Active Surveillance in Men with Low-risk Prostate Cancer (CLIN1001 PCM301): An Open-laber, Phase 3, Randomised Controlled Trial, Lancet Oncol,18(2017)181-191.
  92. Lebdai S, Bigot P, Leroux P-A, Berthelot L-P, Maulaz P, Azzouzi A-R, Vascular Targeted Photodynamic Therapy with padeliporfin for Low Risk Prostate Cancer Treatment: Midterm Oncologic Outcomes, J Urol, 198(2017)335–344.
  93. Noweski A, Roosen A, Lebdai S, Barret E, Emberton M, Benzaghou F, Apfelbeck M, Gaillac B, Gratzke C, Stief C, Azzouzi A R, Medium-term Follow-up of Vascular-targeted Photodynamic Therapy of Localized Prostate Cancer Using TOOKAD Soluble WST-11 (Phase II Trials), Eur Urol Focus, 5(2019)1022–1028.
  94. Osuchowski M, Bartusik-Aebisher D, Osuchowski F, Aebisher D, Photodynamic Therapy for Prostate Cancer – A Narrative Review, Photodiagn Photodyn Therapy, 33(2021)102158; doi.org/10.1016/j.pdpdt.2020.102158.
  95. Marques M P M, Batista de Carvalho L A E, Tomkinson J, Study of Biogenic and α, ω-Polyamines by Combined Inelastic Neutroc Scattering and Raman Spectroscopies and by Ab Initio Molecular Orbital Calculations, J Phys Chem, 106(2002)2473–2482.
  96. Amorim da Costa A M, Marques M P M, Batista de Carvalho L A E, Raman Spectra of Putrescine, Spermidine and Spermine Polyamines and their N-Deuterated and N-Ionized Derivatives, J Raman Spectrosc, 34(2003)357–366.
  97. Marques MPM, Batista de Carvalho LAE, Vibrational Spectroscopy Studies on Linear Polyamines, Biochem Soc Trans, 35(2007)374–380.
  98. Agostinelli E, Marques MPM, Calheiros R, Gil FPSC, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A, Polyamines: Fundamental Characters in Chemistry and Biology, Amino Acids, 38(2010)393–403.
  99. Marques MPM, Girão T, Pedroso de Lima MC, Gameiro A, Pereira E, Garcia P, Cytotoxic Effects of Metal Complexes of Biogenic Polyamines. I. Platinum(II) Spermidine Compounds: Prediction of their Antitumour Activity, Biochim Biophys Acta,1589(2002)63–70.
  100. Teixeira L J, Seabra M, Reis E, Girãoda Cruz M T, Pedrosode Lima M C, Pereira E, Miranda M A, Marques M P M, Cytotoxic Activity of Metal Complexes of Biogenic Polyamines: Polynuclear Platinum(II) Chelates, J Med Chem, 47(2004)2917–2925.
  101. Silva T M, Oredsson S, Persson L, Woster P M, Marques M P M, Novel Pt(II) and Pd(II) complexes with Polyamines Analogues: Synthesis and Vibrational Analysis, J Inorg Biochem, 108(2012)1–7.
  102. Jastrzab R, Lomozik L, Tylkowski B, Complexes of Biogenic Amines in their Role in Living Systems, Phys Sci Rev, (2016)20160003; doi. 10.1515/psr-2016-0003.
  103. Gerner E W, Meyskens F L, Polyamines and Cancer: Old Molecules, New Understanding, Nature Rev Cancer, 4(2004)781–792.
  104. Igarashi K, Kashiwagi K, Modulation of Cellular Function by Polyamines, Int J Biochem Cell Biol, 42(2010)39–51.
  105. Soda K, The Mechanisms by which Polyamines Accelerate Tumor Spread, J Exp Clin Cancer Res, 30(2011)95; doi.org/10.1186/1756-9966-30-95.
  106. Bachrach U, Polyamines and Carcinogenesis, Amino Acids, 26(2012)307; doi. 10.2478/v10283-012-0023-5.
  107. Nowotarski S L, Woster P M, Casero R A, Polyamines and Cancer: Implications for Chemo prevention and Chemotherapy, Expert Rev Mol Med,15(2013)e3; doi.org/10.1017/erm.2013.3.
  108. Casero R A, Stewart T M, Pegg A E, Polyamine Metabolism and Cancer: Treatments, Challenges and Opportunities, Nature Rev Cancer, 18(2018)681–695.
  109. Summa N, Maigut J, Puchta R, Van Eldik R, Possible Biotransformation Reactions of Polynuclear Pt(II) Complexes, Inorg Chem, 46(2007)2094–2104.
  110. Komeda S, Moulaei T, Chikuma M, Odani A, Kipping R, Farrell N P, Williams L D, The Phosphate Clamp: A Small and Independent Motif for Nucleic Acid Backbone Recognition, Nucleic Acids Res, 39(2011)325–336.
  111. Komeda S, Unique Platinum-DNA Interactions May Lead to More Effective Platinum-based Antitumor Drugs, Metallomics, 3(2011)650–655.
  112. Prisecaru A, Molphy Z, Kipping R G, Peterson E J, Qu Y, Kellet A, Farrell N P, The Phosphate Clamp: Sequence Selective Nucleic Acid Binding Profiles and Conformational Induction of Endonuclease Inhibition by Cationic Triplatin Complexes, Nucleic Acids Res, 42(2014)13474–13487.
  113. Petrovic B, Jovanovic S, Puchta R, Van Eldik R, Mechanistic Insight on the Chemistry of Potential pt Antitumor Agents as revealed by Collaborative Research Performed in Kragujevac and Erlangen, Inorg Chim Acta, 495(2019)118953; doi.org/10.1016/j.ica.2019.06.004.
  114. Marques M P M, Valero R, Parker S F, Tomkinson J, Batista de Carvalho L A E, Polymorphism in Cisplatin Anticancer Drug, J Phys Chem B, J Phys Chem B, 117(2013)6421–6429.
  115. Batista de Carvalho A L M, Parker S F, Batista de Carvalho L A E, Marques M P M, Novel Platinum-based Anticancer Drug: A Complete Vibrational Study, Acta Cryst C, 74(2018)628–634.
  116. Batista de Carvalho A L M, Pilling M, Gardner P, Doherty J, Cinque G, Wehbe K, Kelley C, Batista de Carvalho L A E, Marques M P M, Chemotherapeutic Response to Cisplatin-like Drugs in Human Breast Cancer Celss Probed by Vibrational Microspectroscopy, Faraday Disc, 187(2016)273–298.
  117. Marques M P M, Gianolio D, Cibin G. Tomkinson J, Parker S F, Valero R, Lopes R P, Batista de Carvalho LAE, A Molecular View of Cisplatin´s Mode of Action: Interplay with DNA Bases and Acquired Resistance, Phys ChemChemPhys, 17(2015)5155–5171.
  118. Marques M P M, Batista de Carvalho A L M, Mamede A P, Santos I P, Garcia Sakai V, Dopplapudi A, Cinque G, Wolna M, Gardner P, Batistade Carvalho LAE, Chemotherapeutic Targets in Osteosarcoma: Insights from Synchrotron-micro FTIR and Quasi-Elastic Neutron Scattering, J Phys Chem B, 123(2019)6968–6979.
  119. Cheng H, Huq F, Beale P, Fisher K, Synthesis, Characterisation, Activities, Cell Uptake and DNA Binding of a Trinuclear Complex: [{trans-PtCl(NH3)2µ-{trans– Pd(NH3)(2-hydroxypyridine)-(H2N(CH2)6NH2)2]Cl4, Eur J Med Chem, 41(2006)896–903.
  120. Miodragovic D, Merlino A, Swindell E P, Bogachkov A, Ahn R W, Abuhadba S, Ferraro G. Marzo T, Mazar A P, Messori L, Arsenoplatin-1 is a Dual Pharmacophore Anticancer Agent, J Am Chem Soc, 141(2019)6453–6457.
  121. Ferraro G, Cirri D, Marzo T, Pratesi A, Messori L, Merlino A, The First Step of Arsenoplatin-1 Aggregation in Solution Unveiled by Solving the Crystal Structure of its Protein Adducts, Dalton Trans, 50(2021)68–71.
  122. Huq F, Tayyem H, Yu J Q, Beale P, Fisher K, Synthesis, Activity and Binding with DNA of [{trans-PtCl(NH3)2µ-{trans– Pd(4-hydroxypyridine)2-(H2N(CH2)6NH2)2]Cl4 (TH8), Med Chem, 5(2009)372–381.
  123. Jovanovic S, Petrovic B, Petkovic M, Bugarcic Z D, Kinetics and Mechanism of Substitution Reactions of the New Bimetallic[{PdCl(bipy)}{µ-(H2N(CH2)6NH2)}{PtCl(bipy)}]Cl(ClO4) Complex with Important Bio-molecules, Polyhedron, 101(2015)206–214.
  124. Jovanovic S, Obrencevic K, Bugarcic ZD, Popovic I, Zakula J, Petrovic B, New Bimetallic Palladium(II) and Platinum(II) Complexes: Studies of the Nucleophilic Substitution Reactions, Interactions with CT-DNA, Bovine Serum Albumin and Cytotoxic Activity, Dalton Trans, 45(2016)12444–12457.
  125. Leitner D M, Havenith M, Gruebele M, Biomolecule Large-amplitude Motion and Solvation Dynamics: Modelling and Probes from THz to X-Rays, Int Rev Phys Chem, 25(2006)553–582.
  126. Markelz A G, Terahertz Dielectric Sensitivity to Biomolecular Structure and Function, IEEE J Selected Topics Quantum Electronics, 14(2008)180–190.
  127. Orlando A R, Gallerano G P, Terahertz Radiation Effects and Biological Applications, J Infrared Milli Terahz Waves, 30(2009)1308–1318.
  128. Falconer R J, Markelz A G, Terahertz Spectroscopic Analysis of Peptides and Proteins, J Infrared Milli Terahz Waves, 33(2012)973–988.
  129. Xie L, Yao Y, Ying Y, The Application of Terahertz Spectroscopy to Protein Detection: A Review, Appl Spec Rev, 49(2014)448–461.
  130. Niessen K A, Xu M, Markelz A G, Terahertz Optical measurements of Correlated Motions with Possible Allosteric Function, Biophys Rev, 7(2015)201–216.
  131. Niessen K A, Xu M, George D K, Chen M C, Deré-D´Amaré A R, Snell E H, Cody V, Pace J, Schmidt M, Markelz A G, Protein and RNA Dynamical Fingerprint, Nature Commun, 10(2019)1026; doi.org/10.1038/s41467-019-08926-3.
  132. Yu L, Hao L, Meiqong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F, Yang Z, The Medical Application of Terahertz Technology in Non-invasive Detection of Cells and Tissues: Opportunities and Challenges, RSC Adv, 9(2019)9354–9363.
  133. Huang Y, Singh R, Xie L,Ying Y, Attenuated Total Reflection for Terahertz Modulation, Sensing,Spectroscopy and Imaging Applications: A Review, Appl Sci,10(2020)4688.
  134. Doherty J, Cinque G, Gardner P, Single-cell Analysis Using Fourier Transform Infrared Microspectroscopy, Appl Spec Rev, 52(2016)560–587.
  135. Cinque G, Kelley C S, Frogley M D, Filik J, Wehbe K,Fitzpatrick A, Donaldson P M,World First for Diamondin Synchrotron- based IR Photothermal Nanospectroscopy, Sync Rad News, 29(2016)37; doi.org/10.1080/08940886.2016.1198675.
  136. Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljkovic M, Krafft C, Popp J, Molecular Pathology via IR and Raman Spectral Imaging, Biophotonics, 6(2013)855; doi.org/10.1002/jbio.201300131.
  137. Nallala J, Diebold M-D, Gobinet C, Bouché O, Sockalingum G D, Piot O, Manfait M, Infrared Spectral Histopathology for Cancer Diagnosis: A Novel Approach for Automated Pattern Recognition of Colon Adenocarcinoma, Analyst, 139(2014)4005-4015.
  138. Baker R, Houri M, El Achy S, Kamel S, Refaat T, Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature, J Cancer Res Clin Oncol, 141(2015)769–784.
  139. Hughes C, Baker M J, Can Mid-infrared biomedical Spectroscopy of Cells, Fluids and Tissue Aid Improvements in Cancer Survival? A Patient Paradigm, Analyst, 141(2016)467–465.
  140. Chan K L A, Kazarian S G, Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) Imaging of Tissues and Live Cells, Chem Soc Rev, 45(2016)1850–1864.
  141. Verdonck M, Denayer A, Delvaux B, Garaud S, De Wind R, Desmedt C, Sotiriou C, Willard-Gallo K, Goormaghtigh E, Characterization of Human Breast Cancer Tissues by Infrared Imaging, Analyst, 141(2016)606–619.
  142. Santos I P, Caspers P J, Schut T C B, Van Doorn R, Hegt V N, Koljenovic S, Puppels G J, Raman Spectrosopic Characterization of Melanoma and Benign Melanocytic Lesions Suspected of Melanoma Using High-wavenumber Raman Spectroscopy, Anal Chem, 88(2016)7683–7688.
  143. Pilling M, Gardner P, Fundamental Developments in Infrared Spectroscopic Imaging for Biomedical Applications, Chem Soc Rev, 45(2016)1935–1957.
  144. Pilling M, Henderson A, Shanks JH, Brown MD, Clarke NW, Gardner P, Infrared Spectral Histopathology Using Haematoxylin and Eosin (H&E) Stained Glass Slides: A Major Step Forward Towards Clinical Translation, Analyst, 142(2017)1258–1268.
  145. Pilling M, Henderson A, Gardner P, Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging, Anal Chem, 89(2017)7348–7355.
  146. Santos I P, Barroso E M, Schut T C B , Caspers P J, Van Lanschot C G F, Choi D-H, Vander Kamp M F, Smits R W H,VanDoorn R, Verdijk R M,Hegt V N, Von der Thusen J H, Van der Deurzen C H M, Koppert L B, Van Leenders G J L H, Ewing-Graham P C, VanDoorn H, Dirven C M F, Busstra M B, Hardillo J, Sewnaik A, Hove I, Mast H, Monserez D A, Meeuwis C, Nijsten T, Wolvius E B, De Jong R J B, Puppels G J, Koljenovic S, Raman Spectroscopy for Cancer Detection and Cancer Surgery Guidance: Translation to the Clinics, Analyst, 142(2017)3025–3047.
  147. Baker M J, Byrne H J, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian S G, Martin F L, Moger J, Stone N, Sulé- Suso J, Analyst, 143(2018)1735-1757.
  148. Schie I W, Ruger J, Mondol A S, Ramoji A, Neugebauer U, Krafft C, Popp J, High-throughput Screening Raman Spectroscopy Platform for Label-free Cellomics, Anal Chem, 90(2018)2023–2030.
  149. Finlayson D, Rinaldi C, Baker M J, Is Infrared Spectroscopy Ready for the Clinic?, Anal Chem, 91(2019)12117–12128.
  150. Sabtu S N, Sani S F A, Bradley D A, Looi L M, Osman Z, A Review of the Applications of Raman Spectroscopy for Breast Cancer Tissue Diagnostic and their Histopathological Classification of Epithelial to Mesenchymal Transition, J Raman Spectrosc, 51(2020)380-389.
  151. Klementieva O, Sandt C, Martinsson I, Kansiz M, Gouras G K, Borondics F, Super-resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons, Adv Sci, 7(2020)1903004; doi.org/10.1002/advs.201903004.
  152. Lazaro-Pacheco D, Shaaban A M, Rehman S, Rehman I, Raman Spectroscopy of Breast Cancer, Appl Spec Rev, 55(2020)439–475.
  153. Byrne H J, Behl I, Calado G, Ibrahim O, Toner M, Galvin S, Healy C M, Flint S, Lyng F M, Biomedical Applications of Vibrational Spectroscopy: Oral Cancer Diagnostics, Spectrochim Acta A, 252(2021)119470; doi.org/10.1016/j.saa.2021.119470.
  154. Ibrahim O, Toner M, Flint S, Byrne H J, Lyng F M, The Potential of Raman Spectroscopy in the Diagnosis of Dysplastic and Malignant Oral Lesions, Cancers, 13(2021)619; doi.org/10.3390/cancers13040619.
  155. Lewis A T, Gaifulina R, Guppy N J, Isabelle M, Dorney J, Lloyd G R, Rodriguez-Justo M, Kendall C, Stone N, Thomas G M, Developing Raman Spectroscopy as a Diagnostic Tool for Label-free Antigen detection, Biophotonics, 11(2018)e201700028; doi.org/10.1002/jbio.201700028.
  156. Lasch P, Stammler M, Zhang M, Baranska M, Bosch A, Majzner K, FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria, Anal Chem, 90(2018)8896–8904.
  157. Butler H J, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmond-White K, Fullwood N J, Gardner B, Martin-Hirsch P L, Walsh M J, McAinsh M R, Stone N, Martin F L, Using Raman Spectroscopy to Characterize Biological Materials, Nature Protocols, 11(2016)664–687.
  158. Tipping W J, Lee M, Serrels A, Brunton V G, Hulme A N, Stimulated Raman Scattering Microscopy: An Emerging Tool for Drug Discovery, Chem Soc Rev, 45(2016)2075–2089.
  159. Mignolet A, Derenne A, Smolina M, Wood B R, Goormaghtigh E, FTIR Spectral Signature of Anticancer Drugs. Can Drug Mode of Action be Identified?, Biochim Biophys Acta, 1864(2016)85–101.
  160. Al-Jorani K, Ruther A, Martin M, Haputhanthri R, Deacon G B, Li H L, Wood B R, The Application of ATR-FTIR Spectroscopy and the Reversible DNA Conformation as a Sensor to Test the Effectiveness of Platinum(II)Anticancer Drugs, Sensors, 18(2018)4297; doi.org/10.3390/s18124297.
  161. Quaroni L, Infrared Microscopy in the Study of Cellular Biochemistry, Infrared Phys Technol, 105(2020)102779; doi.org/10.1016/j.infrared.2018.11.026.
  162. Spadea A, Denbigh J, Lawrence M J, Kansiz M, Gardner P, Analysis of Fixed and Live Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy, Anal Chem, 93(2021)3938–3950.
  163. Ford R C, Ruffle S V, Ramirez-Cuesta A J, Michalarias I, Beta I, Miller A, Li J, Inelastic Incoherent Neutron Scattering Measurements of Intact Cells and Tissues and Detection of Interfacial Water, J Am Chem Soc,126(2004)4682–4688.
  164. Garcia Sakai V, Arbe A, Quasielastic Neutron Scattering in Soft Matter, Curr Opin Colloid Interface Sci, 14(2009)381–390.
  165. Marques M P M, Batista de Carvalho A L M, Mamede A P, Dopplapudi A, Garcia Sakai V, Batista de Carvalho L A E, Role of Intracellular Water in the Normal-to-Cancer Transition in Human Cells – Insights from Quasi-Elastic Neutron Scattering, Struct Dyn, 7(2020)054501; doi.org/10.1063/4.0000021.
  166. Amado A M, Fiuza S M, Marques M P M, Batista de Carvalho L A E, Conformational and Vibrational Study of Platinum(II) Anticancer Drugs: cis-Diamminedichloroplatinum (II) as a Case Study, J Chem Phys, 127(2007)185104; doi.org/10.1063/1.2787528.
  167. Fiuza S M, Amado A M, Santos H F, Marques M P M, Batista de Carvalho L A E, Conformational and Vibrational Study of cis– Diamminedichloropalladium(II), Phys Chem Chem Phys,12(2010)14309–14321.
  168. Batista de Carvalho L A E, Marques M P M, Martin C, Parker S F, Tomkinson J, Inelastic Neutron Scattering Study of PtII Complexes Displaying Anticancer Properties, ChemPhysChem,12(2011)1334; doi. 10.1002/cphc.201001067.
  169. Ting V P, Schmidtmann M, Wilson C C, Weller M T, Cisplatin: Polymorphism and Structural Insights into an Important Chemotherapeutic Drug, Angew Chem Int Ed, 49(2010)9408-9411.
  170. Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D, Sierra A, The Lipid Phenotype of Breast Cancer Cells Characterized by Raman Microspectroscopy: Towards a Stratification of Maligancy, PLOS ONE, 7(2012)e46456; oi.org/10.1371/journal.pone.0046456.
  171. Poschner S, Maier-Salamon A, Zehl M, Wackerlig J, Dobusch D, Pachmann B, Sterlini K L, Jager W, The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Apporach, Frontiers Pharmacol, 8(2017)699; doi.org/10.3389/fphar.2017.00699.
  172. Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M, Divergent Effects of Daidzein and its Metabolites on Estroge- induced Survival of Breast Cancer Cells, Cancers,12(2020)167; doi.org/10.3390/cancers12010167.
  173. Choi E J, Kim G-H, The Antioxidant Activity of Daidzein Metabolites, o-Desmethylangolensin and Equol, in HepG2Cells, Molec Med Rep, 9(2014)328–332.
  174. Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T, Cell Stiffness is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells, PLOS ONE,7(2012)e46609; doi.org/10.1371/journal.pone.0046609.
  175. Plodinec M, Loparic M, Monnier C, Obermann E C, Zanetti-Dallenbach R, Oertle P, Hyotyla J T, Aebi U, Bentires- Alj M, Lim R Y H, Schoenenberger C-A, The Nanomechanical Signature of Breast Cancer, Nature Nanotech, 7(2012)757–756.
  176. Lekka M, Discrimination Between Normal and Cancerous Cells Using AFM, BioNanoSci, 6(2016)65–80.
  177. Davis PCW, Demetrius L, Tuszynski JA, Cancer as a Dynamical Phase Transition, Theor Biol Med Model, 8(2011)30; doi.org/10.1186/1742-4682-8-30.
  178. Mamontov E, Chu X-Q, Water-protein Dynamic Coupling and New Opportunities for Probing it at Low to Physiological Temperatures in Aqueous Solutions, Phys Chem Chem Phys, 14(2012)11573-11588.
  179. Luby-Phelps K, The Physical Chemistry of Cytoplasm and its Influence on Cell Function: An Update, Molec Biol Cell, 24(2013)2593; doi.org/10.1091/mbc.e12-08-0617.
  180. Mamontov E, Non-monotonicTemperature Dependence of Nanoscopic Dynamics Measured in Living Housefly Larvae, Physica B Condens Matter, 566(2019)23–29.
  181. Davidson R M, Lauritzen A, Seneff S, Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases, Entropy, 15(2013)3822–3876.

Article