Editor-in-Chief : V.K. Rastogi
Asian Journal of Physics | Vol. 33, Nos 1 & 2 (2024) 89-102 |
Raman spectroscopy of semiconductor NWs: Optical resonance effects
Irene Mediavilla, Jose Luis Pura, Julián Anaya, and Juan Jiménez
GdS Optronlab, Ed. LUCIA, Paseo de Belén, 19, Universidad de Valladolid, 47011 Valladolid, Spain
Semiconductor nanowires (NWs) constitute a technological platform for the future nanoscale devices. Heterojunctions turn out to be essential for a great variety of devices. In the case of NWs one can distinguish axial and radial heterojunctions. Usually, NW axial heterojunctions are not abrupt because of the reservoir effect in the catalysts droplets. Understanding the optical properties of heterostructured NWs is a fundamental step for their possible applications on future technologies. The characterization of axially heterostructured NWs can be done by micro-Raman spectroscopy. NWs need to be characterized individually, because the characterization of ensembles of NWs only supplies an average view over the NW population. Fortunately, the interaction of light with NWs allows to reach an intense Raman signal, as the NWs behave as optical antennas. There are resonances associated with the diameter, and resonances at the axial heterojunctions, which are revealed by micro Raman spectroscopy. In order to unveil the underlying physics of the light/NW interaction, the complex-valued electromagnetic (EM) field distribution induced inside heterostructured NWs under light exposure is studied. We present in this work a study of the effect of Raman enhancement on axially heterostructured semiconductor nanowires (NWs). © Anita Publications. All rights reserved.
Keywords: Nanowires, Heterojunctions, Light/NW interaction, Micro-Raman spectroscopy
Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve
References
- Cui Y, Lieber C M, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 291(2001)851–853.
- Yan R, Gargas D, Yang P, Nanowire Photonics, Nat Photon, 3(2009)569–576.
- Samuelson L, Self-forming nanoscale devices, Mater Today, 6(2003)22–31.
- Pura J L, Anaya J, Souto J, Prieto A C, Rodríguez A, Rodríguez T, Periwal P, Baron T, Jiménez J, Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach, J Appl Phys, 123(2018)114302; doi.org/10.1038/nphoton.2009.184.
- Cao L, Laim L, Valenzuela P D, Nabet B, Spanier J E, On the Raman scattering from semiconducting nanowires, J Raman Spectrosc, 38(2007)697–703.
- Luca M D, Zardo I, Semiconductor Nanowires: Raman Spectroscopy Studies, in Raman Spectroscopy and Applications, (ed) Maaz K, (Intech), 2017, pp 81-101.
- Kang S, Golz C, Netzel C, Mogilatenko A, Mediavilla I, Serrano J, Jiménez J, Hatami F, Gallium Phosphide nanowiresgrown on SiO2 by gas-source molecular beam epitaxy, Cryst Growth Des, 23(2023)2568–2575.
- Chen J, Conache G, Pistol M E, Gray S M, Borgström M T, Xu H, Xu H Q, Samuelson L, Håkanson U, Probing Strain in Bent Semiconductor Nanowires with Raman Spectroscopy, Nano Lett, 10(2010)1280–1286.
- Sahoo S, Mallik S K, Sahu M C, Joseph A, Singh S, Gupta S K, Rout B, Pradhan G K, Sahoo S, Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy, Nanotechnol, 31(2020)505701; doi. 10.1088/1361–6528/abb42c.
- Chafai M, Torres A, Antón R, Martín E, Jiménez J, Mitchel W C, Raman scattering from LO phonon-plasmon coupled modes and Hall-effect in n-type silicon carbide 4H-SiC, J Appl Phys, 90(2001)5211–5215.
- Cuscó R, Domènech-Amador N, Hung P Y, Loh W Y, Droopad R, Artús L, Raman Scattering Study of LO Phonon-Plasmon Coupled Modes in p-Type InGaAs, J Alloys Compd, 634(2015)87–93.
- Montenegro D N, Hortelano V, Martínez O, Martínez-Tomas M C, Sallet V, Muñoz-Sanjosé V, Jiménez J, Non radiative recombination centers in catalyst-free ZnO nanorods grown by atmospheric-MOCVD; J Phys D: Appl Phys, 46(2013)235302; doi.10.1088/0022-3727/46/23/235302.
- Ketterer B, Mikheev E, Uccelli E, Fontcuberta i Morral A, Compensation mechanism in silicon-doped gallium arsenide nanowires, Appl Phys Lett, 97(2010)223103; doi.org/10.1063/1.3517254.
- Zardo I, Yazji S, Hörmann N, Hertenberger S, Funk S, Mangialardo S, Morkötter S, Koblmüller G, Postorino P, Abstreiter G, E1(A) Electronic Band Gap in Wurtzite InAs Nanowires Studied by Resonant Raman Scattering, Nano Lett, 13(2013)3011–3016.
- Adu K W, Xiong Q, Gutierrez H R, Chen G, Eklund P C; Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires, Appl Phys A, 85(2006)287–297.
- Li D, Wu Y, Kim P, Shi L, Yang P, Majundar A, Thermal conductivity of individual Silicon nanoiwires, Appl Phys Lett, 83(2003)2934–2936.
- Anaya J, Nanowires Recent Advances, (ed) Peng X, Chapter 11, Thermal transport in Semiconductor NWs, (Intech Open), 2012.
- Anaya J, Rodríguez T, Jiménez J, Thermal conductivity of rough and smooth Silicon nanowires: a predictive approach, Sci Adv Mater, 7(2014)1097–1107.
- Cao L, Fan P, Barnard E S, Brown A M, Brongersma M L, Tuning the Color of Silicon Nanostructures, Nano Lett, 10(2010)2649–2654.
- Anaya J, Torres A, Martín-Martín A, Souto J, Jiménez J, Rodríguez A, Rodríguez T, Study of the temperature distribution in Si nanowires under microscopic laser beam excitation, Appl Phys A, 113(2013)167–176.
- Anaya J, Torres A, Prieto A C, Hortelano V, Jiménez J, Rodríguez A, Rodríguez T, Raman spectrum of Si nanowires: temperature and phonon confinement effects, Appl Phys A, 114(2014)1321–1331.
- Richter H, Wang Z P, Ley L, The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun, 39(1981)625–629.
- Adu K W, Gutiérrez H R, Kim U J, Sumanasekera G U, Eklund P C, Confined Phonons in Si Nanowires, Nano Lett, 5(2005)409–414.
- Piscanec S, Cantoro M, Ferrari A C, Zapien J A, Lifshitz Y, Lee S T, Hofmann S, Robertson J, Raman spectroscopy of silicon nanowires, Phys Rev B, 68(2003)241312(R); doi.org/10.1103/PhysRevB.68.241312.
- Adu K W, Gutierrez H R, Kim U J, Eklund P C, Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study, Phys Rev B, 73(2006)155333;org/10.1103/PhysRevB.73.155333.
- Torres A, Martín-Martín A, Martínez O, Prieto A C, Hortelano V, Jiménez J, Rodríguez A, Sangrador J, Rodríguez T, Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature, Appl Phys Lett, 96(2010)011904; org/10.1063/1.3284647.
- Pura J L, Anaya J, Souto J, Prieto C, A.Rodríguez A, T.Rodríguez, J.Jiménez, Local electric field enhancement at the heterojunction of Si/SiGe axially heterostructured nanowires under laser illumination, Nanotechnology, 27(2016)455709; doi.10.1088/0957-4484/27/45/455709.
- Pura J L, Periwal P, Baron T, Jiménez J, Growth dynamics of SiGe nanowires by the Vapour Liquid Solid method and its impact on SiGe/Si axial heterojunction abruptness Nanotechnol, 29(2018)355602; doi.10.1088/1361-6528/aaca74.
- Pura J L, Magdaleno A J, Muñoz-Segovia D, Glaser M, Lugstein A, Jiménez J, Electromagnetic enhancement effect on the atomically abrupt heterojunction of Si/InAs heterostructured nanowires, J Appl Phys, 125(2019)064303; doi.org/10.1063/1.5058276.
- Mediavilla I, Pura J L, Hinojosa V, Galiana B, Hrachowina L, Borgström M T, Jimenez J, Composition, optical resonances, and doping of InP/InGaP nanowires for tandem solar cells: a micro-Raman analysis, ACS Nano, 18 (2024)10113–10123.