Asian Journal of Physics Vol 31, Nos 3 – 6 (2022) 437-448

Random Fiber Lasers: A guided wave optical device for multidisciplinary photonic applications

Anderson S L Gomes
Department of Physics, Universidade Federal of Pernambuco,
Cidade Universitária, Recife, PE, 50670-901, Brazil

Dedicated to Professor Bishnu P Pal for his enormous contributions to the advancement of research and education in science and technology through his unique vision and outstanding dedication


This paper presents a review of the state-of-the-art in random fiber lasers (RFL), which are guided wave optical devices similar to fiber lasers but with an important difference: RFL relies on scattering to provide the optical feedback mechanism required for laser action in a gain medium, whereas in the conventional laser or fiber laser this is provided by two static mirrors. After introducing the basics of RFLs and highlighting the main developments since 2007, some applications will be described in the fields of optical imaging, Lévy-like behavior, turbulence and photonic spin-glass. © Anita Publications. All rights reserved.
Keywords: Fiber Lasers, Random Fiber Lasers, Photonic Devices, Diagnostic by Imaging, Complex Systems.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Siegman A E, Lasers, University Science Books, (Mill Valley, CA), 1986.
  2. Einstein A, On the Quantum Theory of Radiation, Phys Zs, 18(1917)121.
  3. Schawlow A L, Townes C H, Infrared and Optical Masers, Phys Rev, 112(1958)1940; doi.org/10.1103/PhysRev.112.1940.
  4. Maiman T, Stimulated Optical Radiation in Ruby, Nature, 187(1960)493–494.
  5. Dudley J, Light, Lasers, and the Nobel Prize, Adv Photon, 2(2020)050501; doi.org/10.1117/1.AP.2.5.050501.
  6. https://www.nobelprize.org/prizes/physics/2009/kao/facts/
  7. Snitzer E, Optical maser action of Nd+3 in barium crown glass, Phys Rev Lett, 7(1961)444–446.
  8. Poole S B, Payne D N, Fermann M E, Fabrication of low-loss optical fibres containing rare-earth ions, Electron Lett, 21(1985)737–738.
  9. Kashyap R, Fiber Bragg Gratings, 2nd Edn, (Academic Press), 2009.
  10. Feng Y (Ed), Raman Fiber Lasers, (Springer), 2017.
  11. Dong L, Samson B, Fiber Lasers: Basics, Technology, and Applications, (Taylor and Francis Group), 2016.
  12. Letokhov V S, Stimulated emission of an ensemble of scattering particles with negative absorption, JETP Lett (Engl Transl), 5(1967)212–215.
  13. Gomes A S L, Moura A L, de Araújo C B, Raposo E P, Recent advances and applications of random lasers and random fiber lasers, Prog Quantum. Electron,78(2021)100343; doi.org/10.1016/j.pquantelec.2021.100343.
  14. Lawandy N M, Balachandran R M, Gomes A S L, Sauvain E, Laser action in strongly scattering media, Nature 368(1994)436–438.
  15. de Matos C J S, Menezes L D S, Brito-Silva A M, Gamez M A M, Gomes A S L, de Araújo C B, Random fiber laser, Phys Rev Lett, 99(2007)153903; doi.org/10.1088/1612-202X/ac3247.
  16. Pal B (ed), Guided Wave Optical Components and Devices: Basics, Technology, and Applications, (Elsevier), 2006.
  17. Agrawal G P, Nonlinear Fiber Optics, 5th Edn, (Academic Press), 2013.
  18. Zhang M, Kelleher E J R, Popov S V, Taylor J R, Ultrafast fibre laser sources: Examples of recent developments, Opt Fiber Technol, 20(2014)666-677.
  19. Gagne M, Kashyap R, Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating, Opt Express, 17(2009)19067–19074.
  20. Turitsyn S K, Babin S A, El-Taher A E, Harper P, Churkin D V, Kablukov S I, Ania-Castanon J D, Karalekas V, Podivilov E V, Random distributed feedback fibre laser, Nat Photonics, 4(2010)231–235.
  21. Li J, Wu H, Wang Z, Lin S, Lu C, Raposo E P, Gomes A S L, Rao Y, Lévy spectral intensity statistics in a Raman random fiber laser, Opt Lett, 44(2019)2799–2802.
  22. Margulis W, Das A, von der Weid J P, Gomes A S L, Hybrid electronically addressable random fiber laser, Opt Express, 28(2020)23338–3396.
  23. Rao Y J, Zhang W L, Recent progress in random fiber lasers, 2013 12th International Conference on Optical Communications and Networks 1-4, (2013) ICOCN, doi: 10.1109/ICOCN.2013.6617202.
  24. Turitsyn S K, Babin S A, Churkin D V, Vatnik I D, Nikulin M, Podivilov E V, Random distributed feedback fibre lasers, Phys Rep, 542(2014)133–193.
  25. Churkin D V, Sugavanam S, Vatnik I D, Wang Z, Podivilov E V, Babin S A, Rao Y, Turitsyn S K, Recent advances in fundamentals and applications of random fiber lasers, Adv Opt Photon, 7(2015)516–569.
  26. Chen H, Gao S, Zhang M, Zhang J, Qiao L, Wang T, Gao F, Hu X, Li S, Zhu Y, Advances in Random Fiber Lasers and Their Sensing Application, Sensors, 20(2020)6122–6141.
  27. de Araújo C B, Gomes A S L, Raposo E P, Levy Statistics and the Glassy Behavior of Light in Random Fiber Lasers, Appl Sci, 7(2017)644–662.
  28. Guo J Y, Zhang W L, Rao Y J, Zhang H H, Ma R, Lins I C X, Lopes D S, Gomes A S L, High contrast speckle-free dental bio-imaging using random fiber laser in backscattering configuration, OSA Continuum, 3 (2020)759–767.
  29. Gonzalez I R R, Raposo E P, Macedo A M S, Menezes L S, A S L Gomes, Coexistence of turbulence-like and glassy behavior in a photonic system, Sci Rep, 8(2018)17046; doi.org/10.1038/s41598-018-35434-z.
  30. Report of the Nobel Committee for Physics, Scientific Background on the Nobel Prize in Physics 2021. https://www.nobelprize.org/prizes/physics/2021/advanced-information/
  31. Carvalho M T, Lotay A S, Kenny F M, Girkin J M, Gomes A S L, Random laser illumination: an ideal source for biomedical polarization imaging? in Multimodal Biomedical Imaging, XI(2016)9701; doi.org/10.1117/12.2209623.
  32. Redding B, Choma M A and Cao H, Speckle-free laser imaging using random laser illumination, Nat Photonics, 6(2012)355–359.
  33. Bohr T, Jensen M H, Paladin G, Vulpiani A, Dynamical Systems Approach to Turbulence, (Cambridge University Press, Cambridge),1998.
  34. Mézard M, Parisi G, Virasoro M A, Spin Glass Theory and Beyond, (World Scientific, Singapore), 1987.
  35. Turitsyna E G, Smirnov S V, Sugavanam S, Tarasov N, Shu X, Babin S A, Podivilov E V, Churkin D V, Falkovich G, Turitsyn S K, The laminar-turbulent transition in a fibre laser, Nat Photon, 7(2013)783–786.
  36. González I R, Lima B C, Pincheira P I R, Brum A A, Macêdo A M S, Vasconcelos G L, Menezes L S, Raposo E P, Gomes A S L, Kashyap R, Turbulence hierarchy in a random fibre laser, Nat Commun, 8(2017)15731; doi.org/10.1038/ncomms15731.
  37. Ghofraniha N, Viola I, Maria F D, Barbarella G, Gigli G, Leuzzi L, Conti C, Experimental evidence of replica symmetry breaking in random lasers, Nat Commun, 6(2015)6058; doi.org/10.1038/ncomms7058
  38. Lima B C, Gomes A S L, Pincheira P I R, Moura A L, Gagné M, Raposo E P, de Araújo, C B, Kashyap R, Observation of Lévy statistics in one-dimensional erbium-based random fiber laser, J Opt Soc Am B, 34(2017)293–299.
  39. Raposo E P, González I R R, Macêdo A M S, Lima B C, Kashyap R, Menezes L S, Gomes A S L, Evidence of Floquet phase in a photonic system, Phys Rev Lett, 122(2019)143903; doi.org/10.1103/PhysRevLett.122.143903.
  40. Gomes A S L, Lima B C, Pincheira P I R, Moura A L, Gagné M, Raposo E P, de Araújo C B, Kashyap R, Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser, Phys Rev A, 94(2016)011801(R); doi.org/10.1103/PhysRevA.94.011801.
  41. Yu S F, Electrically pumped random lasers, J Phys D: Appl Phys, 48 (2015) 483,001; doi.org/10.1088/0022-3727/48/48/483001.