Asian Journal of Physics Vol 32, Nos 1 & 2 (2023) 101-126

Resonant Raman scattering in semiconductor nanostructures and thin films

Andrés Cantarero and Carlos Rodríguez-Fernández
Molecular Science Institute, University of Valencia, PO Box 22085, 46071 Valencia, Spain


Raman spectroscopy is a versatile technique which provides valuable information of many physical properties of solid: crystals and nanostructures from its characteristic phonon spectrum. Magnetic phase transitions are observed through the change of the phonon spectrum or the behaviour of particular phonon modes, surface states or interfaces can be studied through the appearance of new phonon modes, the electronic structure of solids can be analysed by means of resonant Raman scattering, the stress can be obtained by analysing the shift of non-polar phonons and the knowledge of the phonon deformation potentials. These are a few examples of the power of this standout technique. Micro-Raman spectroscopy allows the successful analysis of tiny amounts of samples, single quantum dots, quantum wires or two-dimensional materials. In this paper, after a brief theoretical introduction, we will give some examples of the use of resonant Raman scattering in the study of semiconductor nanostructures and thin films. © Anita Publications. All rights reserved.
Keywords: Raman spectroscopy, Electron-phonon interaction, Semiconductor nanostructures.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Sood A K, Menéndez J, Cardona M, Ploog K, Resonance Raman Scattering by Confined LO and TO Phonons in GaAs-AlAs Superlattices, Phys Rev Lett, 54(1985)2111–2114.
  2. (a) Comas F, Trallero-Giner C, Cantarero A, Optical Phonons and Electron-Phonon Interaction in Quantum Wires, Phys Rev B, 47(1993)7602–7605.
    (b) Comas F, Cantarero A, Trallero-Giner C., Moshinsky M, Polar Optical Oscillations in Quantum Wires and Free-Standing Wires: The Electron-Phonon Interaction Hamiltonian, J Phys Condens Matter, 7(1995)1789–1805.
  3. Voutsas A T, Hatalis M K, Boyce J, Chiang A, Raman Spectroscopy of Amorphous and Microcrystalline Silicon Films Deposited by Low-pressure Chemical Vapor Deposition, J Appl Phys, 78(1995)6999–7006.
  4. Cantarero A, Trallero-Giner C, Cardona M, Excitons in one-phonon resonant Raman scattering: Deformation-potential interaction, Phys Rev B, 39(1989)8388–8397.
  5. Gontijo R N, Resende G C, Fantini C, Carvalho B R, Double Resonance Raman Scattering Process in 2D Materials, J Mater Res, 34(2019)1976–1992.
  6. Alexandrou A, Trallero-Giner C, Cantarero A, Cardona M, Theoretical model of stress-induced triply resonant Raman scattering, Phys Rev B, 40(1989)1603–1610.
  7. Tenne D A, Bruchhausen A, Lanzillotti-Kimura N D, Fainstein A, Katiyar R S, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni J H, Tian W, Schlom D G, Choi K J, Kim D M, Eom C B, Sun H P, Pan X Q, Li Y L, Chen L Q, Jia Q X, Nakhmanson S M, Rabe K M, Xi X X, Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy, Science, 313(2006)1614–1616.
  8. Capizzi M, Frova A, Optical Gap of Strontium Titanate (Deviation from Urbach Tail Behavior), Phys Rev Lett, 25(1970)1298–1302.
  9. Suzuki K, Kijima K, Optical Band Gap of Barium Titanate Nanoparticles Prepared by RF-Plasma Chemical Vapor Deposition, Jpn J Appl Phys, 44(2005)2081–2082.
  10. Teweldebrhan D, Goyal V, Balandin A, Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals, Nano Lett, 10(2010)1209–1218.
  11. Rodríguez-Fernández C, Manzano C V, Romero A H, Martín J, Martín-González M, de Lima M M (Jr), Cantarero A, The Fingerprint of Te-Rich and Stoichiometric Bi2Te3 Nanowires by Raman Spectroscopy, Nanotech, 27(2016)075706; doi.10.1088/0957-4484/27/7/075706.
  12. Rodríguez-Fernández C, Almokhtar M, Ibarra-Henández W, Morais de Lima M, Romero AH, Asahi H, Cantarero A, Isotopic heft on the B1l silent mode in ultra-narrow gallium nitride nanowires, Nano Lett, 18(2018)5091–5097.
  13. Ruf T, Serrano J, Cardona M, Pavone P, Pabst M, Krisch M, D’Astuto M, Suski T, Grzegory I, Leszczynski M, Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering, Phys Rev Lett, 86(2001)906–909.
  14. Kane C L, Mele E J, Z2 topological order and the quantum spin hall effect, Phys Rev Lett, 95(2005)146802; doi.org/10.1103/PhysRevLett.95.146802.
  15. Roddríguez-Fernández C, Akius K, de Lima M M, Cantarero A, van Ruitenbeek J M, Sabater C, Raman signal reveals the rhombohedral crystallographic structure in ultra-thin layers of bismuth thermally evaporated on amorphous substrate, Mater Sci Eng B, 270(2021)115240; doi.10.1016/j.mseb.2021.115240.
  16. Camacho J, Cantarero A, Hernández-Calderón I, González L, Raman Spectroscopy and Photoluminescence of ZnTe Thin Films Grown on GaAs, J Appl Phys, 92(2002)6014–6015.