Asian Journal of Physics Vol. 33, Nos 9 & 10 (2024) 563-574

RF behavior of dielectric window for 1 THz, 1 kW power gyrotron

Nitin Kumar, Shubham Choudhury, Narendra Kumar Singh, Hasina Khatun and Anirban Bera
CSIR-Central Electronics Engineering Research Institute, Pilani- 333 031, India
This paper is dedicated to Dr Shrinivas Joshi


THz radiation shows various unique features which make it useful for different scientific and industrial applications such as imaging, sensing, spectroscopy, medical imaging, etc. Gyrotron exhibits the capability to generate electromagnetic radiation in the range of sub-THz band with kilowatt power. Due to high frequency, the design of the components of the gyrotron becomes more complicated and challenging than the gyrotrons widely used for lower frequency applications. One such key components of the egyrotron is the dielectric window, which separates the ultrahigh vacuum inside the gyrotron from the outer atmospheric pressure. The radial size and the thickness of the dielectric disk reduce linearly with frequency which makes the RF window very sensitive in its power handling capacity. Here, the electrical design of the RF window for 1 THz, 1 kW gyrotron is presented. The sensitivity of the disk thickness is also analyzed in detail. The design simulations are performed in CST-Microwave Studio. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.9-10.2024.651-656
Keywords: Gyrotron, THz, Dielectric window, Diamond window.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Consortini A, Ronchi L, Stefanutti L, Investigation of atmospheric turbulence by narrow laser beams, Appl Opt, 9(1970)2543–2547.
  2. Consortini A, Laser and Turbulence: How our atmospheric propagation researches started and where they arrived, in Imaging and Applied Optics 2019, OSA Technical Digest (Optica Publishing Group, 2019), paper PTh2D.1.
  3. Wyngaard J C, Turbulence in the atmosphere, (Cambridge University Press), 2010.
  4. Popp J, Tuchin V V, Chiou A, Heinemann S H, (eds), Handbook of Biophotonics, Volumes 1-3, (Wiley-VCH), 2011.
  5. Boas D A, Pitris C, Ramanujam N, Handbook of Biomedical Optics, (CRC Press), 2011.
  6. Jelinkova H (ed), Lasers for Medical Application, (Woodhead Publishing), 2013.
  7. Dimish U S, Olivo M, (eds), Frontiers in Biophotonics for Translational Medicine, (Springer, Singapore), 2015.
  8. Svanberg S, Atomic and Molecular Spectroscopy – Basic Aspects and Practical Applications, 5th edn, (Springer-Nature, Heidelberg), 2022.
  9. Svanberg S, Laser spectroscopy in medical diagnostics, Chap 10 in [6], pp 286.
  10. Svanberg K, Bendsoe N, Photodynamic therapy for human malignancies with superficial and interstitial illumination, Chap 25 in [6], pp 760.
  11. McManamon P F, Lidar technologies and systems, (SPIE, Bellingham), 2019.
  12. Svanberg S, LIDAR, Chap. 13.3 in Träger F, (ed), Springer Handbook of Lasers and Optics, 2nd edn, (Springer, Heidelberg), 2012, p 1146.
  13. McCurdy M R, Bakhirkin Y, Wysocki G, Lewicki R, Tittel F K, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis, J Breath Res, 1(2007)014001/1-12; 10.1088/1752-7155/1/1/014001.
  14. Wang C, Sahay P, Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits, Sensors, 9(2009)8230–8262.
  15. Lin Y, Manalili D, Khodabakhsh A, Cristescu S M, Real-Time Measurement of CH4 in human breath using a compact CH4/CO2 sensor, Sensors, 24(2024)1077; doi.org/10.3390/s24041077.
  16. Sjöholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S, Analysis of gas dispersed in scattering solids and liquids, Opt Lett, 26(2001)16–18.
  17. Svanberg S, Gas in scattering media absorption spectroscopy – from basic studies to medical applications, Laser Photonics Rev, 7(2013)779; doi.org/10.1002/lpor.201200073.
  18. Andersson M, Grönlund R, Persson L, Sjöholm M, Svanberg K, Svanberg S, Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters, Laser Physics, 17(2007)893.
  19. Svanberg S, Analysis of trapped gas – Gas in scattering media absorption spectroscopy, Laser Phys, 20(2010)68–77.
  20. Svanberg S, Gas in scattering media absorption spectroscopy, in Sigrist M (ed), Encyclopedia of Analytical Chemistry, 10.1002/9780470027318.a9325.pub2 (John Wiley & Sons), 2019.
  21. United Nations Global News on Human Health, https://news.un.org/en/story/2023/10/1141952.
  22. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing–amidst-mounting-need-for-services.
  23. https://www.webmd.com/cancer/cancer-incidence-age.
  24. DePinho R, The age of cancer, Nature, 408(2000)248–254.
  25. Diana M, Marescaux J, Robotic surgery, British J Surg, 102(2015)e15–e28; doi.org/10.1002/bjs.9711.
  26. Shafirstein G. Bellnier D, Oakley E, Hamilton S, Potasek M, Beeson K, Parilov E, Interstitial photodynamic therapy — A focused review, Cancers, 9(2017)12; doi.org/10.3390/cancers9020012.
  27. Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. J Biomed Opt, 26(2021)070604; doi. 10.1117/1.JBO.26.7.070604.
  28. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2023), doi.org/10.3390/antibiotics11081079.
  29. Svanberg S, Tissue diagnostics using lasers, in Lasers in Medicine, Chap 6, Waynant R W (ed), (CRC Press, Boca Raton), 2002, pp 135–169.
  30. Andersson-Engels S, Svanberg K, Svanberg S, Fluorescence imaging in medical diagnostics, Chap 10 in [4], pp 265–305.
  31. Pircher M, Zawadzki R J, Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging, Biomed Opt Express, 8(2017)2536–2562.
  32. Drexler W, Fujimoto J G (eds), Optical Coherence Tomography: Technology and Applications, (Springer), 2008.
  33. Walani S R, Global burden of preterm birth, Int J Gynecol Obstet, 150(2020)31–33.
  34. Eustice C, Centers for Disease Control and Prevention (CDC), The connection between age and arthritis, 2023, https://www.verywellhealth.com/age-and-arthritis-189653.
  35. Crosby D, Bhatia S, Brindle K M, Coussens L M, Dive C, Emberton M, Balasubramanian S, Early detection of cancer, Science, 375(2022)6586; doi. 10.1126/science.aay90.
  36. Di Pietro M, Canto M I, Fitzgerald R C, Endoscopic management of early adenocarcinoma and squamous cell carcinoma of the esophagus: screening, diagnosis, and therapy, Gastroenterology, 154(2018)421–436.
  37. D’Hallewin M A, Bezdetnaya L, Guillemin F, Fluorescence detection of bladder cancer: a review. European Urology, 42(2002)417–425.
  38. Zaak D, Karl A, Knüchel R, Stepp H, Hartmann A, Reich O, Stief C, Diagnosis of urothelial carcinoma of the bladder using fluorescence endoscopy, BJU International, 96(2005)217–222.
  39. Dennis S, Fisher D, Climate change and infectious diseases: The next 50 years, Ann Acad Med Singap, 47(2018)401–404.
  40. Aslam B, Wang W, Arshad I, Khurshid M, Muzammil S, Rasool M H, Nisar M A, Alvi R F, Aslam M A, Qamar M U, Salamat M K F, Baloch Z, Antibiotic resistance: a rundown of a global crisis, Infect Drug Resist Oct 10(2018)111645–1658.
  41. Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, Osek J, Antibiotic resistance in bacteria — A review, Antibiotics, 11(2022)1079; doi. org/10.3390/antibiotics11081079.
  42. Butler M S, Henderson I R, Capon R J, Blaskovich M A T, Antibiotics in the clinical pipeline as of December 2022, J Antibiot (Tokyo), 76(2023)431–473.
  43. Liyanarachi K V, Solligård E, Mohus R M, Åsvold B O, Rogne T, Damås J K, Incidence, recurring admissions and mortality of severe bacterial infections and sepsis over a 22-year period in the population-based HUNT study, PLoS One, 17(2022)e0271263; doi: 10.1371/journal.pone.0271263.
  44. Jones K E, Patel N G, Levy M A, Storeygard A, Balk D, Gittleman J L, Daszak P, Global trends in emerging infectious diseases, Nature, 451(2008)990–993.
  45. Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, Jian M, Ding Z, Dai X, Bao F, Liu A, Application of droplet digital PCR to detect the pathogens of infectious diseases, Biosci Rep, 38(2018)BSR20181170; doi:https://doi.org/10.1042/BSR20181170.
  46. Madden J, Outterson K, Trends in the global antibiotics market, Nat Rev Drug Discov, 3(2023)174. doi: 10.1038/d41573-023-00029-5.
  47. Wise R B, Antimicrobial resistance priorities for action, J Antimicrob Chemother, 49(2002)585–586.
  48. Falagas M E, Giannopoulou K P, Vardakas K Z, Dimopoulos G, Karageorgopoulos D E, Comparison of antibiotics with placebo for treatment of acute sinusitis: A meta-analysis of randomised controlled trials, The Lancet Infectious Diseases, 8(2008)543–552.
  49. Mukara K B, Lilford R J, Tucci D L, Waiswa P, Prevalence of middle ear infections and associated risk factors in children under 5 years in Gasabo District of Kigali City, Rwanda, Int J Pediatr, (2017)4280583; doi. 10.1155/2017/4280583.
  50. https://www.nhsscot/illnesses-and-conditions/ears-nose-and-throat/middle-ear-infection-otitis-media/
  51. Venekamp R P, Sanders S L, Glasziou P P, Del Mar C B, Rovers M M, Antibiotics for acute otitis media in children, Cochrane Database Syst Rev, 6(2015),CD000219. doi: 10.1002/14651858.CD000219.pub4. Update in: Cochrane Database Syst Rev. 11(2023)CD000219; doi.org/10.1002/14651858.CD000219.pub.
  52. Bernhard W, Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann Anat, 208(2016)146–150.
  53. Matthay M A, Zemans R L, Zimmerman G A, Arabi Y M, Beitler J R. Mercat,A, Calfee C S, Acute respiratory distress syndrome, Nature Reviews Disease Primers, 5(2019)18; doi.org/10.1038/s41572-019-0069-0.
  54. Kommawar A, Borkar R, Vagha J, Lakhkar B, Meshram R, Taksande A, Study of respiratory distress in newborn. International Journal of Contemporary Pediatrics 4(2017)490–494.
  55. Mart M F, Ware L B, The long-lasting effects of the acute respiratory distress syndrome. Expert Review of Respiratory Medicine 14(2020)577–586.
  56. Slattery M M, Morrison J, Preterm delivery, Lancet, 360(2002)1489–1497.
  57. Goldenberg R L, Culhane J F, Iams J D, Romero R, Epidemiology and causes of preterm birth, Lancet 371(2008)75–84.
  58. Jin Y T, Duan Y, Deng X K, Lin J, Prevention of necrotizing enterocolitis in premature infants – An updated review, World J Clin Pediatr, 8(2019)23–32.
  59. Phua J, Weng L, Ling L, Egi M, Lim C M, Divatia J V, Shrestha B R, Arabi Y M, Ng J, Gomersall C D, Nishimura M, Koh Y, Du B, Asian Critical Care Clinical Trials Group. Intensive care management of corona virus disease 2019 (COVID-19): Challenges and recommendations, Lancet Respir Med, 5(2020)506–517. Erratum in: Lancet Respir Med, 5(2020)e42.
  60. Ehlinger M, Moser T, Adam P, Bierry G, Gangi A, de Mathelin M, Bonnomet F, Early prediction of femoral head avascular necrosis following neck fracture. Orthopaedics & Traumatology: Surgery & Research, 97(2011)79–88.
  61. Seamon J, Keller T, Saleh J, Cui Q, The pathogenesis of nontraumatic osteonecrosis. Arthritis, (2012)601763, doi: 10.1155/2012/601763.
  62. Lee M S, Hsieh P H, Shih C H, Wang C J, Non-traumatic osteonecrosis of the femoral head – from clinical to bench, Chang Gung Med J, 33(2010)351–360.
  63. Mont M A, Hungerford D S, Non-traumatic avascular necrosis of the femoral head. JBJS, 77(1995)459–474.
  64. Zhao D W, Yu M, Hu K, Wang W, Yang L, Wang B J, Gao X H, Guo Y M, Xu Y Q, Wei Y S, Tian S M, Yang F, Wang N, Huang S B, Xie H, Wei X W, Jiang H S, Zang Y Q, Ai J, Chen Y L, Lei G H, Li Y J, Tian G, Li Z S, Cao Y, Ma L, Prevalence of nontraumatic osteonecrosis of the femoral head and its associated risk factors in the Chinese population: Results from a nationally representative survey. Chin Med J, 128(2015)2843–2850.
  65. Liu N, Zheng C, Wang Q, Huang Z, Treatment of non-traumatic avascular necrosis of the femoral head, Exp Ther Med, 23(2022)321; doi: 10.3892/etm.2022.11250.
  66. Zhao G Y, Zhang W X, Duan Z, Lian M, Hou N B, Li Y Y, Zhu S M, Svanberg S, Mercury as a geophysical tracer gas – Emissions from the Emperor Qin tomb in Xi´an studied by laser radar, Sci Rep, 10(2020)10414; doi.org/10.1038/s41598-020-67305-x.
  67. Svanberg K, Svanberg S, Monitoring of free gas in-situ for medical diagnostics using laser spectroscopic techniques, in [7], pp 307–321.
  68. Somesfalean G, Sjöholm M, Alnis J, af Klinteberg C, Andersson-Engels S, Svanberg S, Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques, Appl Opt, 41(2002)3538–3544.
  69. Persson L, Lewander M, Andersson M, Svanberg K, Svanberg S, Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy, Appl Opt, 47(2008)2028–2034.
  70. Lewander M, Guan Z G, Svanberg K, Svanberg S, Svensson T, Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses, Opt Express, 13(2009)10849–10863.
  71. Persson L, Andersson M, Andersson F, Svanberg S, Approach to optical interference fringe reduction in diode-laser-based absorption spectroscopy, Appl Phys B, 87(2007)523–530.
  72. Buck A L, New equations for computing vapor pressure and enhancement factor, J Appl Meteorol, 20(1996)1527–1532.
  73. Mei L, Somesfalean G, Svanberg S, Pathlength determination for gas in scattering media absorption spectroscopy, Sensors, 14(2014)3871–3890.
  74. Lundin P, Mei L, Andersson-Engels S, Svanberg S, Laser spectroscopic gas concentration measurements in situations with unknown optical path length enabled by absorption line shape analysis, Appl Phys Lett, 103(2013)034105; doi.org/10.1063/1.4813860.
  75. Alnis J, Anderson B, Sjöholm M, Somesfalean G, Svanberg S, Laser spectroscopy on free molecular oxygen dispersed in wood materials, Appl Phys B, 77(2003)691–695.
  76. Karlsson M, Lundin P, Cocola L, Somesfalean G, Svanberg S, Bargigia I, D´Andrea C, Nevin A, Farina A, Pifferi A, Cubeddu R, Orlandi M, Non-invasive optical diagnosis of gases in wood, Shipwrecks 2011, (ed) Ek M, ISBN 978-91-7501-142-4, (Vasa Museum, Stockhom 2011), p 176.
  77. Bargigia I, Nevin A, Farina A, Pifferi A, D’Andrea C, Karlsson M, Lundin P, Somesfalean G, Svanberg S, Diffuse optical techniques applied to wood characterization, J Near Infrared Spectrosc, 21(2013)259–268.
  78. Andersson M, Persson L, Sjöholm M, Svanberg S, Spectroscopic studies of wood-drying processes, Opt Express, 14(2006)3641–3653.
  79. Svensson T, Adolfsson E, Lewander M, Xu C T, Svanberg S, Disordered, strongly scattering porous materials as miniature multi-pass gas cells, Phys Rev Lett, 107(2011)143901; doi.org/10.1103/PhysRevLett.107.143901.
  80. Lou X T, Xu C T, Svanberg S, Somesfalean G, Multi-mode diode laser correlation spectroscopy using gas-filled porous materials for pathlength enhancement, Appl Phys B, 109(2012)453–460.
  81. Svensson T, Shen Z, Laser spectroscopy of gas confined in nanoporous materials, Appl Phys Lett, 96(2010)021107; doi.org/10.1063/1.3292210.
  82. Svensson T, Lewander M, Svanberg S, Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics, Opt Express, 18(2010)16460–16473.
  83. Xu C T, Lewander M, Andersson-Engels S, Adolfsson E, Svensson T, Svanberg S, Wall collision line broadening at reduced pressures: Towards non-destructive characterization of nanoporous materials, Phys Rev A, 84(2011)042705; doi.org/10.1103/PhysRevA.84.042705.
  84. Svensson T, Adolfsson E, Burresi M, Savo R, Xu C T, Wiersma D S, Svanberg S, Pore size assessment by high-resolution laser spectroscopy of wall collision line broadening of confined gases: Experiments of strongly scattering nanoporous zirconia ceramics with fine-tuned pore sizes, Appl Phys B, 110(2013)147–154.
  85. Svensson T, Persson L, Andersson M, Svanberg S, Andersson-Engels S, Johansson J, Folestad S, Noninvasive characterization of pharmaceutical solids by diode laser oxygen spectroscopy, Appl Spectrosc, 61(2007)784; doi.org/10.1366/000370207781393.
  86. Svensson T, Andersson M, Rippe L, Svanberg S, Andersson-Engels S, Johansson J, Folestad S, VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids, Appl Phys B, 90(2008)345–354.
  87. Svensson T, Alerstam E, Johansson J, Andersson-Engels S, Optical porosimetry and investigations of the porosity experienced by light interacting with porous media, Opt Lett, 35(2010)1740–1742.
  88. Johansson J, Sparén A, Wikström H, Tajarobi P, Koch R, Lundin P, Långberg A, Sebesta M, Lewander Xu M, Optical porosimetry by gas in scattering media absorption spectroscopy (GASMAS) applied to roller compaction ribbons, Int J Pharm, 592(2021)120056; doi.org/10.1016/j.ijpharm.2020.120056.
  89. Lewander M, Guan Z G, Persson L, Olsson A, Svanberg S, Food monitoring based on diode laser gas spectroscopy, Appl Phys B, 93(2008)619–625.
  90. Lundin P, Cocola L, Olsson A, Svanberg S, Non-intrusive headspace gas measurements by laser spectroscopy — Performance validated by an intrusive reference sensor, J Food Eng, 111(2012)612–617.
  91. Lewander M, Svensson T, Svanberg S, Olsson A, Non intrusive measurements of food and packaging quality, Packaging Technology and Science, 24(2011)271–280.
  92. Zhang H, Lin H Y, Li T Q, Duan Z, Svanberg K, Svanberg S, Non-invasive optical detection of oxygen content in food packages using Gas in Scattering Media Absorption Spectroscopy, Acta Optica Sinica, 36(2016)90230005; doi.10.3788/AOS201636.0230005.
  93. Li T Q, Lin H Y, Zhang H, Svanberg K, Svanberg S, Application of tunable diode laser spectroscopy in assessment of food quality, Appl Spectrosc, 71(2017)929–938.
  94. Church I J, Parsons A L, Modied atmosphere packaging technology – A review, J Sci Food Agri, 67(1995)143–152.
  95. Phillips C A, Review: Modified atmosphere packaging and its effects on the microbiological quality and safety of produce, International J Food Sci & Techn, 31(1996)463–479.
  96. Li W S, Lin H Y, Zhang H, Svanberg K, Svanberg S, Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities, J Biophotonics, 11(2018) e201700154; doi 10.1002/jbio.201700154.
  97. Li Y, Li W S, Hu L N, Svanberg K, Svanberg S, Non-intrusive Studies of Gas Contents and Gas Diffusion in Hen Eggs, Biomed Opt Express, 10(2018)83–91.
  98. Persson L, Anderson B, Andersson M, Sjöholm M, Svanberg S, Studies of gas exchange in fruits using laser spectroscopic techniques, Proc Fruitic 05, Information and Technology for Sustainable Fruit and Vegetable Production, 543-552, Montpellier, (September 2005).
  99. Persson L, Gao H, Sjöholm M, Svanberg S, Diode laser absorption spectroscopy for studies of gas exchange in fruits, Opt Lasers Eng, 44(2006)687–698.
  100. Tylewicz U, Lundin P, Cocola L, Rocculi P, Svanberg S, Dejmek P, Gόmez Galindo F, Gas in scattering media absorption spectroscopy (GASMAS) detected persistent vacuum in apple tissue after vacuum impregnation, Food Biophysics, 7(2012)28-34.
  101. Zhang H, Huang J, Li T Q, Wu X X, Svanberg S, Svanberg K, Studies for tropical fruit ripening using three different spectroscopic techniques, J Biomed Opt, 19(2014)067001; doi.org/10.1117/1.JBO.19.6.067001.
  102. Huang J, Zhang H, Lin H Y, Li T Q, Mei L, Svanberg K, Svanberg S, Gas exchange in fruits related to skin condition and fruit ripening, J Biomed Opt, 21(2016)127007, doi: 10.1117/1.JBO.21.12.127007.
  103. Lin X B, Zhang H, Hu L N, Zhao G Y, Svanberg S, Svanberg K, Ripening of avocado fruits studied by spectroscopic techniques, J Biophotonics,13(2020)e202000076; doi.org/10.102.jbio.202000076.
  104. Persson L, Svanberg K, Svanberg S, On the potential for human sinus cavity diagnostics using diode laser gas spectroscopy, Appl Phys B, 82(2006)313–317.
  105. Persson L, Kristensson E, Simonsson L, Svanberg S, Monte Carlo simulations of optical human sinusitis diagnostics, J Biomed Opt, 12(2007)054002; doi.org.10.1117/12.779088.
  106. Persson L, Andersson M, Cassel-Engquist M, Svanberg K, Svanberg S, Gas monitoring in human sinuses using tunable diode laser spectroscopy, J Biomed Optics, 12(2007)054001; doi.org.10.1117/1.2777189.
  107. Lewander M, Lindberg S, Svensson T, Siemund R, Svanberg K, Svanberg S, Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy, Rhinology, 50(2011)26; doi.org.10.4193/Rhino.10.231.
  108. Huang J, Zhang H, Li T Q, H Y Lin, Svanberg K, Svanberg S, Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics, J Biophotonics, 8(2015)985; doi.org/10.1002/jbio.201500110.
  109. Zhang H, Han N, Lin Y Y, Huang J W, Svanberg S, Svanberg K, Gas monitoring in human frontal sinuses – Stability considerations and gas exchange studies, Sensors, 21(2021)4413; doi.org/10.3390/s21134413.
  110. Lindberg S, Lewander M, Svensson T, Siemund R, Svanberg K, Svanberg S, Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy, Annals of Otology, Rhinology & Laryngology, 121(2012)217–223.
  111. Zhang H, Huang J, Li T Q, Svanberg S, Svanberg K, Optical detection of middle ear infection using spectroscopic techniques – Phantom experiments, J Biomed Opt, 20(2015)057001; doi 10.1117/1.JBO.20.5.057001.
  112. Hu L N, Li W S, Lin H Y, Li Y, Zhang H, Svanberg K, Svanberg S, Towards an optical diagnostic system for otitis media using a combination of otoscopy and spectroscopy, J Biophotonics, 12(2019) e201800305; doi.org/10.1002/jbio.201800305.
  113. Lewander M, Bruzelius A, Svanberg S, Svanberg K, Fellman V, Non-intrusive gas monitoring in neonatal lungs using diode laser spectroscopy: Feasibility study, J Biomed Opt, 16(2011)127002; doi.org/10.1117/1.3663211.
  114. Lundin P, Svanberg E K, Cocola L, Lewander Xu M, Somesfalean G, Andersson-Engels S, Jahr J, Fellman V, Svanberg K, Svanberg S, Non-invasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: Feasibility study, J Biomed Opt, 18(2013)127005; doi.org/10.1117/1.JBO.18.12.127005.
  115. Svanberg E K, Lundin P, Larsson M, Åkesson J, Svanberg K, Svanberg S, Andersson-Engels S, Fellman V, Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants, Pediatric Research, 79(2016)621–628.
  116. Liao P, Larsson J, Svanberg, E K, Lundin P, Swartling J, Lewander Xu M, Bood J, Andersson-Engels S, Computer simulation analysis of source-detector position for percutaneously measured O2-gas signal in a three-dimensional preterm infant lung, J Biophotonics, 11(2018)e201800023; doi.org/10.1002/jbio.201800023.
  117. Larsson J, Liao P, Lundin P, Svanberg E K, Swartling J, Lewander Xu M, Bood J, Andersson-Engels, S, Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen—Laser-detector position considerations, J Biophotonics, 11(2018)e201700097; doi. https://doi.org/10.1002/jbio.201700097.
  118. Larsson J, Leander D, Lewander Xu M, Fellman V, Bood J, Svanberg E K, Comparison of dermal vs internal light administration in human lungs using the TDLAS-GASMAS technique—Phantom studies, J Biophotonics, 12(2019) e201800350; doi. org/10.1002/jbio.201800350.
  119. Pacheco A, Jayet B, Svanberg E K, Dehghani H, Dempsey E, Andersson-Engels S, Numerical investigation of the influence of the source and detector position for optical measurement of lung volume and oxygen content in preterm infants, J Biophotonics, 15(2022)e202200041; doi.org/10.1002/jbio.202200041.
  120. Pacheco A, Matias J, Grygoryev K, Hansson M, Bergsten S, Andersson-Engels S, Laser absorption spectroscopy measurements of different pulmonary oxygen gas concentrations in transmittance and remittance geometry: phantom study, J Biomed Opt, 28(2023)115003; doi.org/10.1117/1.JBO.28.11.115003.
  121. Panaviene J, Pacheco A, Schwarz Ch E, Grygoryev K, Andersson-Engels S, Dempsey E M, Gas in scattering media absorption spectroscopy as a potential tool in neonatal respiratory care, Pediatric Research, 92(2022)1240–1246.
  122. Lin Y Y, Lundin P, Svanberg E K, Svanberg K, Svanberg S, Sahlberg A-L, Gas in Scattering Media Absorption Spectroscopy on small and large scales – Towards the extension of lung spectroscopic monitoring to adults, Translational Biophotonics, (2021); doi. 10.1002/tbio.202100003.
  123. Svanberg S, Svanberg E K, Larsson M, System and method for laser based internal analysis of gas in a body of a human, US Patent 11,744,467 (2023).
  124. Svanberg E K, Larsson J, Rasmussen M, Larsson M, Leander D, Bergsten S, Bood J, Greisen G, Fellman V, Changes in pulmonary oxygen content are detectable with laser absorption spectroscopy: proof of concept in newborn piglets, Pediatric Research, 89(2021)823–829.
  125. Palme H, Lin Y Y, Svanberg E K, Bergsten S, Svanberg K, Svanberg S, Sahlberg A-L, (Work in progress), 2024.
  126. Lin H Y, Li W S, Zhang H, Chen P, He W, Svanberg S, Svanberg K, Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies, J Biophotonics, 10(2016)1356-1364; doi.10.1002/jbio.201600229.
  127. Chen D L, Li W S, He W, Zhang H, Zhang Q W, Lin H Y, Svanberg S, Svanberg K, Chen P, Laser-based gas absorption spectroscopy in decaying hip bone: Water vapor as a predictor of osteonecrosis, J Biomed Opt, 24(2019)065001; doi.org/10.1117/1.JBO.24.6.065001.
  128. Chen P, Li W S, Lin H Y, Chen D L, Li Y, Svanberg K, Svanberg S, Assessment of free gas in the tibial condyle bone of the human knee by diode laser spectroscopy with possible application to arthrosis diagnostics, IEEE J Sel Top Quant Electr, 25(2018)1–4; doi.org/10.1109/JSTQE.2018.2871610.
  129. Hampson K M, Turcotte R, Miller D T, Kurokawa K, Males J R, Ji N, Booth M J,Adaptive optics for high-resolution imaging, Nat Rev Methods Primers, 1(2021)68; doi.org/10.1038/s43586-021-00066-7.
  130. Gigan S, Katz O, Aguiar H B De, Andresen E R, Aubry A, Bertolotti J, Bossy E, Bouchet D, Roadmap on wavefront shaping and deep imaging in complex media, J Phys Photonics,4(2022)042501; org/10.1088/2515-7647/ac76f9.
  131. Roos J E, McAdams H P, Kaushik S S, Driehuys B, Hyperpolarized gas MR imaging: Technique and applications, Magn Reson Imaging Clin N Am, 23(2015)217–229; doi.org/10.1016/j.mric.2015.01.003.