Editor-in-Chief : V.K. Rastogi
Asian Journal of Physics | Vol. 34, Nos 1 & 2 (2024) 9-21 |
Screening and management of type 2 diabetes mellitus with Raman spectroscopy
Kyra Grace Kaiser1 and Ioana Emilia Pavel1
1Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi,
6300 Ocean Dr, Corpus Christi, TX 78412, U.S.A
Raman spectroscopy is a well-established analytical chemistry technique, which has proven to have numerous medical applications because of its chemical fingerprinting capabilities and compatibility with biological samples. Surface-enhanced Raman spectroscopy (SERS), an embodiment of Raman, has overcome many of the major limitations of normal Raman and has expanded its medical avenues due to its low detection limits. A growing application of Raman and SERS in clinical research focuses on the screening and management of type 2 diabetes mellitus (T2DM) to improve patient outcomes and quality of life. This review examines the Raman and SERS effects and outlines a few of their major applications (e.g., diagnosis, glucose measurement, biomarker detection, and pathogen identification) and current challenges (e.g., calibration for anatomical differences and inconsistencies of glucose levels in blood and interstitial fluids) within T2DM clinical studies. © Anita Publications. All rights reserved.
Doi:
Keywords: Raman, SERS, Diabetes mellitus, Diagnostics, Biomarkers.
Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve
References
- Raman C V, The Raman Effect – Landmark. American Chemical Society. https://www.acs.org/education/whatischemistry/landmarks/ramaneffect.html (accessed 2024-04-15).
- aNobel Prize in Physics 1930. NobelPrize.org. https://www.nobelprize.org/prizes/physics/1930/raman/lecture/ (accessed 2025-01-31).
2b. Rastogi V K, An Interview with Wolfgang Kiefer, On the occasion of 80th birthday of Wolfgang; Feb 12, 2021, Asian J Phys, 30(2021)239–250. - Hollon T, Orringer D A, Label‐free Brain Tumor Imaging Using Raman‐based Methods, J Neurooncol, 151(2021)393–402.
- Mosca S, Conti C, Stone N, Matousek P, Spatially Offset Raman Spectroscopy, Nat Rev Methods Primers, 1(2021) 1–16.
- Stokes and anti-Stokes scattering. https://www.doitpoms.ac.uk/tlplib/raman/raman_scattering.php/stokes.php (accessed 2024-12-13).
- Saletnik A, Saletnik B, Puchalski C, Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues, Molecules, 26(2021)1537; doi.org/10.3390/molecules26061537.
- Jeong J.-E, Sutton J J, Ryu H S, Kang M, Tay E J, Nguyen T L, Gordon K C, Shim S.-H, Woo H Y, Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping, ACS Nano, 17(2023)4800–4812.
- Xu J, Yu T, Zois C E, Cheng J.-X., Tang Y, Harris A L, Huang W E, Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing, Cancers, 13(2021)1718; doi.org/10.3390/cancers13071718.
- Hanna K, Krzoska E, Shaaban A M, Muirhead D, Abu-Eid R, Speirs V, Raman Spectroscopy: Current Applications in Breast Cancer Diagnosis, Challenges and Future Prospects, Br J Cancer, 126(2022)1125–1139.
- Gaba F, Tipping W J, Salji M, Faulds K, Graham D, Leung H Y, Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements, Cancers, 14(2022)1535; doi.org/10.3390/cancers14061535.
- Szaniawska A, Kudelski A, Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis, Front Chem, 9(2021); doi.org/10.3389/fchem.2021.664134.
- Liu H, Gao X, Xu C, Liu D, SERS Tags for Biomedical Detection and Bioimaging, Theranostics, 12(2022) 1870–1903.
- Liang X, Li N, Zhang R, Yin P, Zhang C, Yang N, Liang K, Kong B. Carbon-Based SERS Biosensor: From Substrate Design to Sensing and Bioapplication, NPG Asia Mater, 13(2021)1–36.
- Crichton R R, Methods to Study Metals in Biological Systems. In Biological Inorganic Chemistry, 2nd Edn, Chapter 6, (Elsevier, Oxford), 2012, pp 117–131.
- Wells K L, Alla P K, Kaiser K G, Murgulet I T, Adragna N C, Pavel I E, SERS of Human Red Blood Cells in Non-Resonant Conditions: Benefits, Limitations, and Complementary Tools (CytoViva and GFAAS), Chemosensors, 11(2023)353; doi.org/10.3390/chemosensors11070353.
- Zheng Y, Rosa L, Thai T, Ng S H, Juodkazis S, Bach U, Phase Controlled SERS Enhancement, Sci Rep, 9(2019) 744, doi.org/10.1038/s41598-018-36491-0.
- Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños K A, González-Fuentes M A, Méndez-Albores A, A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus, Biosensors, 11(2021)66; doi.org/10.3390/bios11030066.
- Erkey C, Türk M, Chapter 6 -Thermodynamics and Kinetics of Adsorption of Metal Complexes on Surfaces from Supercritical Solutions. In Supercritical Fluid Science and Technology, (Elsevier, Oxford), 2021, pp 73–127.
- Ho C.-S., Jean N, Hogan C A, Blackmon L, Jeffrey S S, Holodniy M, Banaei N, Saleh A A E, Ermon S, Dionne J, Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning, Nat Commun, 10(2019) 4927; doi.org/10.1038/s41467-019-12898-9.
- Rivera D, Young T, Rao A, Zhang J.Y., Brown C, Huo L, Williams T, Rodriguez B, Schupper A J; Current Applications of Raman Spectroscopy in Intraoperative Neurosurgery, Biomedicines, 12(2024)2363: doi.org/10.3390/biomedicines12102363.
- Sun X, Li X, Editorial: Aging and Chronic Disease: Public Health Challenge and Education Reform, Front Public Health, 11(2023)1175898; doi.org/10.3389/fpubh.2023.1175898.
- Diabetes; https://www.who.int/health-topics/diabetes (accessed 2024-11-18).
- CDC, National Diabetes Statistics Report. Diabetes. https://www.cdc.gov/diabetes/php/data-research/index.html (accessed 2025-01-31).
- A Report Card: Diabetes in the United States Infographic. Diabetes. https://www.cdc.gov/diabetes/communication-resources/diabetes-statistics.html (accessed 2025-01-31).
- Sapra A, Bhandari P, Diabetes, In StatPearls; StatPearls Publishing: Treasure Island (FL), 2024.
- Roden M, Shulman G I, The Integrative Biology of Type 2 Diabetes, Nature, 576(2019)51–60.
- Symptoms & Causes of Diabetes – NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/symptoms-causes (accessed 2024-11-18).
- Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe K.B., Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus, Int J Mol Sci, 21(2020)6275; doi.org/10.3390/ijms21176275.
- Tomic D, Shaw J E, Magliano D J, The Burden and Risks of Emerging Complications of Diabetes Mellitus, Nat Rev Endocrinol, 18(2022)525; doi.org/10.1038/s41574-022-00690-7.
- Nguyen T T, Ta Q T H, Nguyen T K O, Nguyen T T D, Van Giau V, Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease, Int J Mol Sci, 21(2020)3165; doi.org/10.3390/ijms21093165.
- CDC, Your Diabetes Care Schedule. Diabetes. https://www.cdc.gov/diabetes/treatment/your-diabetes-care-schedule.html (accessed 2025-01-31).
- Almehmadi L M, Curley S M, Tokranova N A, Tenenbaum S A, Lednev I K, Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection, Sci Rep, 9(2019)12356; doi.org/10.1038/s41598-019-48650-y.
- Huang J.-A., Mousavi M Z, Giovannini G, Zhao Y, Hubarevich A, Soler M A, Rocchia W, Garoli D, De Angelis F, Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot, Angew Chem Int Ed Engl, 59(2020)11423–11431.
- Diabetes Tests & Diagnosis – NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/tests-diagnosis (accessed 2025-01-31).
- Diabetes Testing. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/basics/getting-tested.html (accessed 2024-04-14).
- Cox M E, Edelman D, Tests for Screening and Diagnosis of Type 2 Diabetes, Clinical Diabetes, 27(2009)132–138.
- Guevara E, Torres-Galván J C, Ramírez-Elías, M G, Luevano-Contreras C, González F J, Use of Raman Spectroscopy to Screen Diabetes Mellitus with Machine Learning Tools, Biomed Opt Express, 9(2018)4998–5010.
- Ralbovsky N M, Lednev I K, Vibrational Spectroscopy for Detection of Diabetes: A Review, Appl Spectrosc, 75(2021)929–946.
- Villa-Manríquez J F, Castro-Ramos J, Gutiérrez-Delgado F, Lopéz-Pacheco M A, Villanueva-Luna A E, Raman Spectroscopy and PCA-SVM as a Non-Invasive Diagnostic Tool to Identify and Classify Qualitatively Glycated Hemoglobin Levels in Vivo, J Biophotonics, 10(2017)1074–1079.
- Mathew T K, Zubair M, Tadi P, Blood Glucose Monitoring, In StatPearls; StatPearls Publishing: Treasure Island (FL), 2025.
- Li N, Zang H, Sun H, Jiao X, Wang K, Liu T C-Y, Meng Y, A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels, Molecules, 24(2019)1500; doi.org/10.3390/molecules24081500.
- Considerations for Blood Glucose Monitoring and Insulin Administration. Injection Safety. https://www.cdc.gov/injection-safety/hcp/infection-control/index.html (accessed 2025-01-31).
- Alshehri K A, Altuwaylie T M, Alqhtani A, Albawab A A, Almalki A H, Type 2 Diabetic Patients Adherence Towards Their Medications, Cureus, 12(2020)e6932; doi.org/10.7759/cureus.6932.
- Kang J W, Park Y S, Chang H, Lee W, Singh S P, Choi W, Galindo L H, Dasari R R, Nam S H, Park J, So P T C, Direct Observation of Glucose Fingerprint Using in Vivo Raman Spectroscopy, Sci Adv, 6(2020)eaay5206; doi.org/10.1126/sciadv.aay5206.
- Storrie-Lombardi M C, Lambert J L, Borchert M S, Kimura A, Roseto J, Bing R J, Measuring Aqueous Humor Glucose Across Physiological Levels: NIR Raman Spectroscopy, Multivariate Analysis, Artificial Neural Networks, and Bayesian Probabilities; SAE Technical Paper 981598; SAE Technical Paper: Warrendale, PA, 1998; doi.org/10.4271/981598.
- Todaro B, Begarani F, Sartori F, Luin S, Is Raman the Best Strategy towards the Development of Non-Invasive Continuous Glucose Monitoring Devices for Diabetes Management?, Front Chem, 10(2022); doi.org/10.3389/fchem.2022.994272.
- Pelletier C C, Lambert J L, Borchert M, Determination of Glucose in Human Aqueous Humor Using Raman Spectroscopy and Designed-Solution Calibration, Appl Spectrosc, 59(2005)1024–1031.
- Enejder A M K, Scecina T G, Oh J, Hunter M, Shih W.-C, Sasic S, Horowitz G L, Feld M S, Raman Spectroscopy for Noninvasive Glucose Measurements, J Biomed Opt, 10(2005)031114; doi.org/10.1117/1.1920212.
- Chaiken J, Peterson C M, Noninvasive Blood and Tissue Analysis: Raman Spectroscopy, One Perspective for Monitoring of Glucose and Beyond, J Diabetes Sci Technol, 15(2020)28–33; doi.org/10.1177/1932296820964803.
- Shao J, Lin M, Li Y, Li X, Liu J, Liang J, Yao H, In Vivo Blood Glucose Quantification Using Raman Spectroscopy. PLoS One, 7(2012)e48127; doi.org/10.1371/journal.pone.0048127.
- Mahajan M, Kaur T, Singh K, Mahajan B B, Evaluation of Nail Fold Capillaroscopy Changes in Patients with Diabetic Retinopathy and Healthy Controls, and Its Correlation with Disease Duration, HbA1c Levels and Severity of Diabetic Retinopathy: An Observational Study, Indian J Dermatol Venereol Leprol, 90(2024)782–788.
- York D, Falciglia G H, Managlia E, Yan X, Yoon H, Hamvas A, Kirchenbuechler D, Arvanitis C, De Plaen I G, Nailfold Capillaroscopy: A Promising, Noninvasive Approach to Predict Retinopathy of Prematurity, J Pediatr, 259(2023)113478; doi.org/10.1016/j.jpeds.2023.113478.
- Cho H, Kumar S, Yang D, Vaidyanathan S, Woo K, Garcia I, Shue H J, Yoon Y, Ferreri K, Choo H, Surface-Enhanced Raman Spectroscopy-Based Label-Free Insulin Detection at Physiological Concentrations for Analysis of Islet Performance, ACS Sens, 3(2018)65–71.
- Chronic Kidney Disease. Diabetes. https://www.cdc.gov/diabetes/diabetes-complications/diabetes-and-chronic-kidney-disease.html (accessed 2025-01-31).
- de Sousa Vieira E E, Silveira L, Carvalho H C, Bispo J A M, Fernandes F B, Fernandes A B, Biochemical Analysis of Urine Samples from Diabetic and Hypertensive Patients without Renal Dysfunction Using Spectrophotometry and Raman Spectroscopy Techniques Aiming Classification and Diagnosis, Bioengineering, 9(2022)500; doi.org/10.3390/bioengineering9100500.
- Stanifer J W, Muiru A, Jafar T H, Patel U D, Chronic Kidney Disease in Low- and Middle-Income Countries, Nephrol Dial Transplant, 31(2016)868–874; doi.org/10.1093/ndt/gfv466.
- Bispo J A M, Vieira E E de S, L Silveira L(Jr), Fernandes A B, Correlating the Amount of Urea, Creatinine, and Glucose in Urine from Patients with Diabetes Mellitus and Hypertension with the Risk of Developing Renal Lesions by Means of Raman Spectroscopy and Principal Component Analysis, J Biomed Opt, 18(2013)087004; doi.org/10.1117/1.JBO.18.8.087004.
- Flores-Guerrero J L, Muñoz-Morales A, Narea-Jimenez F, Perez-Fuentes R, Torres-Rasgado E, Ruiz-Vivanco G, Gonzalez-Viveros N, Castro-Ramos J, Novel Assessment of Urinary Albumin Excretion in Type 2 Diabetes Patients by Raman Spectroscopy, Diagnostics, 10(2020)141;doi.org/10.3390/diagnostics10030141.
- Delrue C, Speeckaert M.M. The Potential Applications of Raman Spectroscopy in Kidney Diseases, J Pers Med, 12(2022)1644; doi.org/10.3390/jpm12101644.
- Brinkman J W, Heerspink H L, de Zeeuw D, Gansevoort R T, Bakker S J L, Urinary P H Affects Albumin Concentrations after Prolonged Frozen Storage, Nephrol Dial Transplant, 22(2007)3670; doi.org/10.1093/ndt/gfl803.
- Kania K, Byrnes E A, Beilby J P, Webb S A R, Strong K J, Urinary Proteases Degrade Albumin: Implications for Measurement of Albuminuria in Stored Samples, Ann Clin Biochem, 47(2010)151–157.
- Labib A, Rosen J, Yosipovitch G, Skin Manifestations of Diabetes Mellitus. In Endotext; (MDText.com, Inc., South Dartmouth (MA)), 2000.
- Zuhayri H, Samarinova A A, Borisov A V, Guardado D A L, Baalbaki H, Krivova N A, Kistenev Y V, Quantitative Assessment of Low-Dose Photodynamic Therapy Effects on Diabetic Wound Healing Using Raman Spectroscopy, Pharmaceutics, 15(2023)595; doi.org/10.3390/pharmaceutics15020595.
- Advanced glycation end products and their receptors in serum of patients with type 2 diabetes | Scientific Reports. https://www.nature.com/articles/s41598-021-92630-0 (accessed 2025-02-01).
- Shi P, Liu H, Deng X, Jin Y, Wang Q, Liu H, Chen M, Han X. Label-Free Nonenzymatic Glycation Monitoring of Collagen Scaffolds in Type 2 Diabetic Mice by Confocal Raman Microspectroscopy, J Biomed Opt, 20(2015) 027002; doi.org/10.1117/1.JBO.20.2.027002.
- Gautieri A, Passini F S, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker J G, Advanced Glycation End-Products: Mechanics of Aged Collagen from Molecule to Tissue, Matrix Biology, 59(2017)95–108.
- Hudson D M, Archer M, King K B, Eyre D R, Glycation of Type I Collagen Selectively Targets the Same Helical Domain Lysine Sites as Lysyl Oxidase–Mediated Cross-Linking, J Biol Chem, 293(2018)15620–15627.
- Pal R, Bhadada S K, AGEs Accumulation with Vascular Complications, Glycemic Control and Metabolic Syndrome: A Narrative Review, Bone, 176(2023)116884; doi.org/10.1016/j.bone.2023.116884.
- Chen J, Mooldijk S S, Licher S, Waqas K, Ikram M K, Uitterlinden A G, Zillikens M C, Ikram M A, Assessment of Advanced Glycation End Products and Receptors and the Risk of Dementia, JAMA Network Open, 4(2021) e2033012; doi.org/10.1001/jamanetworkopen.2020.33012.
- Alsamad F, Brunel B, Vuiblet V, Gillery P, Jaisson S, Piot O, In Depth Investigation of Collagen Non-Enzymatic Glycation by Raman Spectroscopy, Spectrochim Acta, 251(2021)119382; doi.org/10.1016/j.saa.2020.119382.
- Wilson B M, Bessesen M T, Doros G, Brown S T, Saade E, Hermos J, Perez F, Skalweit M, Spellberg B, Bonomo R A, Adjunctive Rifampin Therapy For Diabetic Foot Osteomyelitis in the Veterans Health Administration, JAMA Network Open, 2(2019)e1916003; doi.org/10.1001/jamanetworkopen.2019.16003.
- Darwitz B P, Genito C J, Thurlow L R Triple Threat: How Diabetes Results in Worsened Bacterial Infections. Infection and Immunity, 92(2024) e00509-23; doi.org/10.1128/iai.00509-23.
- Momodu I I, Savaliya V, Osteomyelitis. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2025.
- Ho C.-S., Jean N, Hogan C A, Blackmon L, Jeffrey S S, Holodniy M, Banaei N, Saleh A A E, Ermon S, Dionne J, Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning, Nat Commun, 10(2019) 4927; doi.org/10.1038/s41467-019-12898-9.
- Usman M, Tang J.-W., Li F, Lai J.-X., Liu Q.-H., Liu W, Wang L, Recent Advances in Surface Enhanced Raman Spectroscopy for Bacterial Pathogen Identifications, J Adv Res, 51(2023)91–107.
- Lima C, Ahmed S, Xu Y, Muhamadali H, Parry C, McGalliard R J, Carrol E D, Goodacre R, Simultaneous Raman and Infrared Spectroscopy: A Novel Combination for Studying Bacterial Infections at the Single Cell Level, Chem Sci, 13(2022)8171–8179.
- Liu S, Hu Q, Li C, Zhang F, Gu H, Wang X, Li S, Xue L, Madl T, Zhang Y, Zhou L, Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy, ACS Sens, 6(2021) 2911–2919.
- Rebrosova K, Samek O, Kizovsky M, Bernatova S, Hola V, Ruzicka F. Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings, Front Cell Infect, Microbiol, 12(2022); doi.org/10.3389/fcimb.2022.866463.