Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1243-1252

Stable and unstable structured vortex beams, their energy flows and accompanying vortex spectra
A Volyar1, E Abramochkin2, E Razueva2, Ya Akimova1, M Bretsko1 and Yu Egorov1


Abstract

The problem of the structural stability of structured vortex beams in both theoretical and experimental optical aspects is considered. We have refined the standard structural stability condition of structured vortex beams by the requirement that the fine structure of the intensity pattern to be constant up to scale and rotation when propagating. We have considered three types of the vortex beams: 1) structurally unstable beams consisting of two LG modes with mismatched amplitudes and phases, 2) stable non-rotating beams with matched amplitudes and phases, and 3) spiral vortex beams rotating when propagating. We have revealed that the critical points pattern in the structurally stable non-rotating beams forms three separatrices, which do not allow the external rotating energy flow to involve the beam fine structure into rotation that together with the scale transformations can significantly distort the beam. Analyzing the chaotic speckle structure of a perturbed structured beam, we have shown that measuring its amplitude and phase spectra by the intensity moments technique in LG and HG bases makes it possible to restore the initial mode structure of the beam. © Anita Publications. All rights reserved.
Keywords: Optical vortex beams, Laguerre-Gauss beams, Optical catastrophes.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Soskin M S, Vasnetsov M V, Singular Optics, Prog Opt, 42(2001)219–276.
  2. Gbur G J, Singular optics, (CRC Press Taylor & Francis Group), 2017, p. 564.
  3. Kotlyar V, Kovalev A, Porfirev A, Vortex laser beams, (CRC Press Taylor & Francis Group), 2018, p. 404.
  4. Nye J F, Berry M V, Dislocations in wave trains, Proc R Soc Lond A, 336(1974)165–190.
  5. Bazhenov Y V, Vasnetsov M V, Soskin M S, Laser beams with screw dislocations in their wavefronts, JETP Lett, 52(1990)429–431.
  6. Berry M V, Optical vortices evolving from helicoidal integer and fractional phase steps, J Opt A: Pure Appl Opt, 6(2004)259–268.
  7. Kotlyar V V, Kovalev A A, Volyar A V, Topological charge of a linear combination of optical vortices: topological competition, Opt Express, 28(2020)8266–8281.
  8. Allen L, Beijersbergen M, Spreeuw R, Woerdman J, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys Rev A, 45(1992)8185; doi. 10.1103/physreva.45.8185.
  9. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci Appl, 8(2019)1–29; doi.org/10.1038/s41377-019-0194-2.
  10. Soskin M S, Gorshkov V N, Vastnetsov M V, Malos J T, Heckenberg N R, Topological charge and angular momentum of light beams carrying optical vortex, Phys Rev A, 56(1997)4064–4075.
  11. Abramochkin E, Volostnikov V, Spiral-type beams: optical and quantum aspects, Opt Comm, 125(1996)302–323.
  12. Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzmán C, Belmonte A, Torres J P, Neely T W, Baker M, Gordon R, B Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, Benjamin McMorran B, Weiner A M, Roadmap on structured light, J Opt, 19(2017)013001; doi.org/10.1088/2040-8978/19/1/013001.
  13. Forbes A, Laser Structured light from lasers, Laser Photon Rev, 13(2019)1900140; doi. 10.1002/lpor.201970043.
  14. Shen Z, Wan Y, Meng X, Fu, Gong M, Polygonal vortex beams, IEEE Photon J, 10(2018)1–16.
  15. Wan Z, WangZ, Yang X, Shen Y, Fu X, Digitally tailoring arbitrary structured light of generalized ray-wave duality, Opt Express, 28(2020)1043–31056.
  16. Shen Y, Wang Z, Fu X, Naidoo D, Forbes A, Poincaré sphere: A generalized representation for multidimensional structured light, Phys Rev A, 102(2020)031501; doi.10.1103/PhysRevA.102.031501.
  17. Soifer V A, Golub M A, Laser beam mode selection by computer-generated holograms, (Boca Raton, CRC Press), 1994, p. 224.
  18. Egorov Y A, Fadeyeva T A, Volyar A V, The fine structure of singular beams in crystals: colours and polarization, J Opt A: Pure Appl Opt, 6(2004)217–228.
  19. Fadeyeva T A, Alexeyev C N, Anischenko P M, Volyar A V, Engineering of the space-variant linear polarization of vortex-beams in biaxially induced crystal, Appl Opt, 51(2012)224–230.
  20. Lazarev G, Chen P J, Strauss J, Fontaine N, Forbes A, Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics, Opt Express, 27(2019)16206–16249.
  21. Pinnell J, Nape I, Sephton B, Cox M A, Rodríguez-Fajardo V, Forbes A, Modal analysis of structured light with spatial light modulators: a practical tutorial, J Opt Soc Am A, 37(2020)146–160.
  22. Rubano A, Cardano F, Piccirillo B, Marrucci L, Q-plate technology: a progress review, J Opt Soc Am B, 36(2019)70–86.
  23. Fossum E R, Hondongwa D B, A Review of the Pinned Photodiode for CCD and CMOS Image Sensors, IEEE J Electron Devices Soc, 2(2014)33–43.
  24. Forbes A, Structured Light: Tailored for Purpose, Opt Photon, 31(2020)24–31.
  25. Shen Yi, Yang Xi, Naidoo D, Fu X, Forbes A, Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser, Optica, 7(2020)1705–1705.
  26. Senthilkumaran P, Kumar Pal S, Phase Singularities to Polarization Singularities, Int J Opt, (2020)2812803; doi.10.1155/2020/2812803.
  27. Pal S K, Senthilkumaran P, Generation of orthogonal lattice fields, J Opt Soc Am A, 36(2019)853–858.
  28. Kumar P, Kumar Pal S, Nishchal N K, Senthilkumaran P, Non-interferometric technique to realize vector beams embedded with polarization singularities, J Opt Soc Am A, 37(2020)1043–1052.
  29. Volyar A, Abramochkin E, Razueva E, Bretsko M, Akimova Ya, Geometry of spiral beams: 3D curved structured vortex beams and optical currents, J Opt,23(2021)044003; doi. 10.1088/2040-8986/abed5c.
  30. Lochab P, Senthilkumaran P, Khare K, Optimal vector beams maintaining robust intensity profile on propagation through turbulence, Phys Rev A, 98(2018)023831; doi.org/10.1103/PhysRevA.98.023831.
  31. Singh K, Tabebordbar N, Forbes A, Dudley A, Digital Stokes polarimetry and its application to structured light: tutorial, J Opt Soc Am A, 37(2020)33–44.
  32. Poston T, Stewart I, Catastrophe theory and its applications, (Pitman, London), 1978, p 491.
  33. Arnold V I, Afrajmovich V S, Ilyashenko Y S, Shilnikov L P, Dynamical systems V. In: Arnold V I, (eds), Bifurcation theory and Catastrophes theory. (Springer-Verlag, New York), 1994, p 274.
  34. Berry M V, Nye J F, Wright F J, The elliptic umbilic diffraction catastrophe, Philos Trans R Soc, London, A, 291(1979) 453–484; doi. 10.1098/rsta.1979.0039.
  35. Nye J F, Dislocation lines in the hyperbolic umbilic diffraction catastrophe, Proc R Soc A, 462(2006)2299–2313; doi. 10.1098/rspa.2006.1683.
  36. Singh R K, Senthilkumaran P, Singh K, Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma, Opt Commun, 281(2008)923–934.
  37. Singh R K, Senthilkumaran P, Singh K, Focusing of a vortex carrying beam with Gaussian background by a lens in the presence of spherical aberration and defocusing, Opt Lasers Eng, 45(2007)773–782.
  38. Abramochkin E G, Volostnikov V G, Spiral light beams, Phys Usp, 47(2004)1177–1203.
  39. Rodrigo J A, Alieva T, Polymorphic beams and Nature inspired circuits for optical current, Sci Rep, 6(2016)35341; doi.org/10.1038/srep35341.
  40. Shen Y, Meng Y, Fu X, Gong M, Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince– Gaussian and Hermite–Laguerre–Gaussian modes, J Opt Soc Am A, 36(2019)578–587.
  41. Abramochkin E, Razueva E, Volostnikov V, General astigmatic transform of Hermite–Laguerre–Gaussian beams, J Opt Soc Am A, 27(2010)2506–2513.
  42. Rodrigo J A, Alieva T, Abramochkin E Castro I, Shaping of light beams along curves in three dimensions, Opt Express, 21(2013)20544–20555.
  43. Kovalev A A, Kotlyar V V, Zaskanov S G, Porfirev A P, Half Pearcey laser beams, J Opt, 17(2015)035604; doi. 10.1088/2040-8978/17/3/035604.
  44. Wen Y, Liu Z, Lin S, Chen Y, Zhang Y, Yu S, Construction characteristics and constraints of accelerating beams based on caustic design, Opt Expess, 26(2018)32728–32738.
  45. Zannotti A, Diebel F, Denz C, Dynamics of the optical swallowtail catastrophe, Optica, 4(2017)1157–1162.
  46. Liu W, Zhang Y, Gao J, Yang X, Generation of three-dimensional optical cusp beams with ultrathin metasurfaces, Sci Rep, 8(2018)9493; doi.org/10.1038/s41598-018-27895-z.
  47. Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M R, Auto-focusing and self-healing of Pearcey beams, Opt Express, 20(2012)18955–18966.
  48. Guralniky Z, Spoffordz C Woolf K, Geometry and Perturbative Sensitivity of non-Smooth Caustics of the Helmholtz Equation, ArXiv, (2019), doi: arXiv:1906.01580.
  49. Zannotti A, Diebel F, Boguslawski M, Denz C, Optical catastrophes of the swallowtail and butterfly beams, New J Phys, 16(2017)053004; doi. 10.1088/1367-2630/aa6ecd.
  50. Fang Z-X, Zhao H-Z, Chen Y, Lu R-D, He L-Q, Wang P, Accelerating polygon beam with peculiar features, Sci Rep, 8(2018)8593; doi.org/10.1038/s41598-018-26737-2.
  51. Forbs A, Structured light from laser resonators, SPIE Newsroom, 5785(2015); doi.10.1117/2.1201502.005785.
  52. Terborg R A, Torres J P, Pruneri V, Technique for generating periodic structured light beams using birefringent elements, Opt Express, 26(2018)28938–28947.
  53. Volyar A, Abramochkin E, Egorov Yu, Bretsko M, Akimova Ya, Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge, Appl Opt, 59(2020)7680–7687.
  54. Berry M V, Stable and unstable Airy-related caustics and beams, J Opt, 19(2017)055601; doi. 10.1088/2040-8986/aa6281.
  55. Lin Y C, Lu T H, Huang K F, Chen Y F, Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode, Opt Express, 19(2011)10293–10303.
  56. Goodman J W, Statistical optics, (John Weilley and Son, New York), 2000, p 512.
  57. Mandel L, Wolf E, Optical coherence and quantum optics, (Cambridge, University Press), 1995, p 1190.
  58. Flusser J, Suk T, Zitovб B, Moments and Moment Invariants in Pattern Recognition, (John Wiley & Sons, Ltd), 2009, p 304.
  59. Volyar A, Bretsko M, Akimova Ya, Egorov Yu, Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront, Opt Lett, 432(2018)5635–5638.
  60. Volyar A, Bretsko M, Akimova Ya, Egorov Yu, Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens, Appl Opt, 58(2019)5748–5755.
  61. Volyar A, Bretsko M, Akimova Ya, Egorov Yu, Digital sorting perturbed Laguerre–Gaussian beams by radial numbers, J Opt Soc Am A, 37(2920)959–968.
  62. Prudnikov A P, Brychkov Y A, Marichev O I, Integrals and Series, Special Functions, (Gordon and Breach), 1986, p 800.
  63. Berry M V, Optical vortices evolving from helicoidal integer and fractional phase steps, J Opt A: Pure Appl Opt, 6(2004)259–268.
  64. Franson M, Laser speckle and applications in optics, (Academic Press Inc, London), 1979, p 174.
  65. Chai Yeh, Handbook of fiber optics: theory and applications, (Academic Press Inc, London), 1990, p 382.
  66. Abdullаеv S S, Zaslavskii G М, The Speckle Structure of an Optical Field in Multimode Waveguides, Kvantovaya Elektronika, 14(1987)1475–1484.
  67. Berry M V, Optical currents, J Opt A Pure Appl Opt, 11(2009)004001; doi.org/10.1088/1464-4258/11/9/094001.
  68. Berry M V, Dennis M R, Stream function for optical energy flow, J Opt, 13(2011)064004; doi.org/10.1088/2040-8978/13/6/064004
  69. Berry M V, Curvature of stream lines, J Phys A Math Theor, 46(2013)395202; doi.org/10.1088/1751-8113/46/39/395202.
  70. Rodrigo J A, Alieva T, Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond, Optica, 2(2015)812–815.
  71. Arnold V I, Khesin B А, Topological Methods in Hydrodynamics, (Springer, New York), 1998, p 393.
  72. Pryamikov A, Alagashev G, Falkovich G, Turitsyn S, Light transport and vortex supported waveguiding in micro-structured optical fibres, Sci Rep, 10(2020)2507; doi. 10.1038/s41598-020-59508-z.