Asian Journal of Physics Vol 32, Nos 1 & 2 (2023) 51-60

Structural, morphological and spectroscopic characterization of chemically
synthesized SnO2 nanoparticles for electronic device applications

Pankaj Kumar Kushwaha, Neelabh Srivastava, Ajai Kumar Gupta, Sunil Kumar Srivastava
Department of Physics,
School of Physical Sciences, Mahatma Gandhi Central University, Motihari-845 401, India


SnO2 nanoparticles are of great importance in magnetic storage devices, optoelectronic devices, catalytic and sensing applications, etc. The structure and morphology of the nanoparticles play important role in variety of cutting-edge applications. SnO2 nanoparticles have been synthesized using co-precipitation method and characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo-gravimetric Analysis (TGA), UV-vis absorption spectroscopy and Raman spectroscopy. XRD data along with Rietveld refinement analysis has confirmed the formation of single-phase SnO2 nanoparticles having tetragonal rutile phase. The optical band gap of the synthesized nanoparticles has been found to be ~ 3.62 eV which is considerably blue shifted as compared to its bulk value. The local ordering and the size of nanoparticles greatly influence the vibrational properties, and therefore, the Raman spectroscopic characterization was made in low-frequency region to investigate the disorder and grain size distribution. The vibrational Raman peaks of SnO2 nanoparticle at 475, 631 and 776 cm–1 suggest the presence of oxygen vacancies and defects/disorders in the synthesized material.© Anita Publications. All rights reserved.
Keywords: SnO2 nanoparticles, Co-precipitation, XRD, SEM, UV-Vis, and Raman spectroscopy.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Minami T, New n-Type Transparent Conducting Oxides, MRS Bull, 25(2000)38–44.
  2. Young D L, Moutinho H, Yan Y, Coutts T J, Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films, J Appl Phys, 92(2002)310–319.
  3. Berry J J, Ginley D S, Burrows P E, Organic light emitting diodes using a Ga:ZnO anode, Appl Phys Lett, 92(2008) 193304; doi.org/10.1063/1.2917565.
  4. Nehru L, Swaminathan V, Chinnappanadar S, Photoluminescence Studies on Nanocrystalline Tin Oxide Powder for Optoelectronic Devices, Am J Mater Sci, 2(2012)6–10.
  5. Patil G E, Kajale D D, Chavan D N, Pawar N K, Ahire P T, Shinde S D, Gaikwad V B, Jain G H, Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis, Bull Mater Sci, 34(2011)1–9.
  6. Porto S P S, Fleury P A, Damen T C, Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2, Phys Rev, 154(1967)522–526.
  7. Diéguez A, Romano-Rodrı́guez A, Vilà A, Morante J R, The complete Raman spectrum of nanometric SnO2 particles, J Appl Phys, 90(2001)1550–1557.
  8. Peercy P S, Morosin B, Pressure and Temperature Dependences of the Raman-Active Phonons in SnO2, Phys Rev B, 7(1973)2779–2786.
  9. Chen H T, Xiong S J, Wu X L, Zhu J, Shen J C, Chu P K, Tin Oxide Nanoribbons with Vacancy Structures in Luminescence-Sensitive Oxygen Sensing, Nano Lett, 9(2009)1926–1931.
  10. Mäki-Jaskari M A, Rantala T T, Theoretical study of oxygen-deficient SnO2 (110) surfaces, Phys Rev B, 65(2002) 245428; doi.org/10.1103/PhysRevB.65.245428.
  11. Liu L Z, Wu X L, Gao F, Shen J C, Li T H, Chu P K, Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy, Solid State Commun, 151(2011)811–814.
  12. Liu L Z, Li X X, Wu X L, Chen X T, Chu P K, Growth of tin oxide nanorods induced by nanocube-oriented coalescence mechanism, Appl Phys Lett, 98(2011)133102; doi. org/10.1063/1.3572021.
  13. Lee E J H, Ribeiro C, Giraldi T R, Longo E, Leite E R, Varela J A, Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay, Appl Phys Lett, 84(2004)1745–1747.
  14. Li Z, Zhao Q, Fan W, Zhan J, Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection, Nanoscale, 3(2011)1646–1652.
  15. Gubbala S, Chakrapani V, Kumar V, Sunkara M K, Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires, Adv Funct Mater, 18(2008)2411–2418.
  16. Cojocaru L, Olivier C, Toupance T, Sellier E, Hirsch L, Size and Shape Fine-tuning of SnO2 Nanoparticles for Highly Efficient and Stable Dye-sensitized Solar Cells, J Mater Chem A, 1(2013)13789–13799.
  17. Lou X W, Wang Y, Yuan C, Lee J Y, Archer L A, Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity, Adv Mater, 18(2006)2325–2329.
  18. El Moustafid T, Modified transparent SnO2 electrodes as efficient and stable cathodes for oxygen reduction, Electrochima Acta, 47(2002)1209–1215.
  19. Lampert C M, Heat mirror coatings for energy conserving windows, Sol Energy Mater, 6(1981)1–41.
  20. Agrahari V, Mathpal M C, Kumar M, Agarwal A, Investigations of optoelectronic properties in DMS SnO2 J Alloys Compd, 622(2015)48–53.
  21. Kim T W, Lee D U, Choo D C, Kim J H, Kim H J, Jeong J H, Jung M, Bahang J H, Park H L, Yoon Y S, Kim J Y, Optical parameters in SnO2 nanocrystalline textured films grown on p-InSb (111) substrates, J Phys Chem Solids, 63(2002)881–885.
  22. Soltan W, Mbarki M, Ammar S, Babot O, Toupance T, Textural, structural and electrical properties of SnO2 nanoparticles prepared by the polyol method, J Mater Sci Mater Electron, 26(2014)1612–1618.
  23. Soltan W, Nasri S, Lassoued M, Ammar S, Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO2 nanoparticles prepared by polyol method, J Mater Sci Mater Electron, 28(2017) 6649–6656.
  24. Cheng B, Russell J M, Shi W, Zhang L, Samulski E T, Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods, J Am Chem Soc, 126(2004)5972–5973.
  25. Yang H, Song X, Zhang X, Ao W, Qiu G, Synthesis of vanadium-doped SnO2 nanoparticles by chemical co-precipitation method, Mater Lett, 57(2003)3124–3127.
  26. Liu Y, Yang F, Yang X, Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route, Colloids Surf Physicochem Eng Asp, 312(2008)219–225.
  27. Peña J, Pérez-Pariente J, Vallet-Regí M, Textural properties of nanocrystalline tin oxide obtained by spray pyrolysis, J Mater Chem, 13(2003)2290–2296.
  28. Davazoglou D, Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxiding SnCl4, Thin Solid Films, 302(1997)204–213.
  29. Parthibavarman M, Hariharan V, Sekar C, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method, Mater Sci Eng C, 31(2011)840–844.
  30. Krishnakumar T, Jayaprakash R, Pinna N, Singh V N, Mehta B R, Phani A R, Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures, Mater Lett, 63(2009)242–245.
  31. Rietveld H M, A profile refinement method for nuclear and magnetic structures, J Appl Crystallogr, 2(1969)65–7
  32. Veerabhadrayya M, Ananda Kumari R, Nagabhushana H, Basavaraj R B, Structural and optical properties of Mg2+ doped tin oxide nanoparticles prepared via green combustion synthesis, Mater Today Proc, 5(2018)21147–21155.
  33. Singh M K, Mathpal M C, Agarwal A, Optical properties of SnO2 quantum dots synthesized by laser ablation in liquid, Chem Phys Lett, 536(2012)87–91.
  34. Rashad M M, Elsayed E M, Al-Kotb M S, Shalan A E, The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles, J Alloys Compd, 581(2013)71–78.
  35. Rashad M M, Shalan A E, Lira-Cantú M, Abdel-Mottaleb M S A, Synthesis and characterization of mesoporous anatase TiO2 nanostructures via organic acid precursor process for dye-sensitized solar cells applications, J Ind Eng Chem, 19(2013)2052–2059.
  36. Merle P, Pascual J, Camassel J, Mathieu H, Uniaxial-stress dependence of the first-order Raman spectrum of rutile I Experiments, Phys Rev B, 21(1980)1617–1626.
  37. Scott J F, Raman Spectrum of SnO2, J Chem Phys, 53(1970)852–853.
  38. Traylor J G, Smith H G, Nicklow R M, Wilkinson M K, Lattice Dynamics of Rutile, Phys Rev B, 3(1971)3457–3472.
  39. Sun S H, Meng G W, Zhang G X, Gao T, Geng B Y, Zhang L D, Zuo J, Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders, Chem Phys Lett, 376(2003)103–107.
  40. Shek C H, Lin G M, Lai J K L, Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2, Nanostructured Mater, 11(1999)831–835.
  41. Yu K N, Xiong Y, Liu Y, Xiong C, Microstructural change of nano-SnO2 grain assemblages with the annealing temperature, Phys Rev B, 55(1997)2666–2671.