Editor-in-Chief : V.K. Rastogi
Asian Journal of Physics | Vol. 33, Nos 9 & 10 (2024) 541-561 |
Sub-terahertz high-power microfabricated folded-waveguide traveling-wave tubes: needs and challenges in realization
Anurag Srivastava and Subrata Kumar Datta
Microwave Tubes Research & Development Centre, DRDO, Bangalore-560 013, India
This paper is dedicated to Dr Shrinivas Joshi
In recent years, folded-waveguide traveling-wave tubes (FWTWTs) have attracted much attention in sub-THz frequency band due to their potential applications in civilian and defence systems. High power and broadband sub-THz sources are required mainly for high resolution radar, secured communication, security sensing and imaging applications. A single FWTWT device provides a figure of merit of ‘power-bandwidth product’ ranging in the regime of 300-3000 W-GHz in the sub-THz band (0.09-0.3 THz) against that of about 2-20 W-GHz obtainable from the present day solid-state technology. Moreover, a folded-waveguide structure is microfabrication compatible and provides high gain and quite broad frequency bandwidth. These advantage led a surge of experimentation in the sub-THz high-power TWT sources using folded-waveguide slow-wave structure (SWS). This review paper briefly presents the need for high-power TWT sources at sub-THz frequency band. A review of state-of-the-art experimentally reported FWTWT sources and solid-state sources at W-band, D-band, and G-band is presented. Criticalities in the realisation of typical sub-assemblies of the sub-THz high power FWTWT, like, folded-waveguide interaction structure, electron beam optics module (EBOM), and broadband pillbox window assembly for the input and output couplers are also highlighted. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.9-10.2024.541-561
Keywords: Sub-Terahertz (STHz), Traveling-wave tube (TWT), Folded-waveguide (FW), Electron beam optics module (EBOM), Slow-wave structure (SWS), Pill-box window (PBW), Magnetic focussing structure.
Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve
References
- Jornet J M, Knightly E W, Mittlemen D M, Wireless communications sensing and security above 100 GHz, Nat Commun, 4(2023)841; doi:10.1038/s41467-023-36621-x.
- Rahman S, Robertson D A, Radar micro-Doppler signatures of drones and birds at K-band and W-band, Sci Rep, 8(2018)17396; doi:10.1038/s41598-018-35880-9.
- Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G, Roadmap of terahertz imaging 2021, Sensors 2021, 21 (2021); doi.10.3390/s21124092.
- Dolganova I N, Zaytsev K I, Metelkina A A, Yakovlev E V, Karasik V E, Yurchenko S O, Combined terahertz imaging system for enhanced imaging quality, Opt Quant Electron, 48(2016)325; doi: 10.1007/s11082-016-0590-2.
- Kim S H, Fan R, Dominski F, ViSAR: A 235 GHz Radar for Airborne Applications, IEEE Int Vac Electron Conf (IVEC), 2019; doi.10.1109/IVEC44880.2019.
- Attenuation by atmospheric gases and related effects, Recommendation ITU-R P.676-12 (08/2019), International Telecommunication Union. [Online]: https://www.itu.int/rec/R-REC-P.676-12-201908-I/en.
- Srivastava A, Microfabricated Terahertz Vacuum Electron Devices: Technology, Capabilities and Performance Overview, EJAET, 2(2015)54–64.
- Rappaport T S, Xing Y, Kanhere O, Ju S, Madanayake A, Mandal S, Alkhateeb A, Trichopoulos G C, Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond, IEEE Access, 7(2019)78729–78757.
- Harvey J F, Steer M B, Rappaport T S, exploiting high millimeter wave bands for military communications, applications, and design, IEEE Access, 7(2019)52350–52359.
- Cook A M, Wright E L, Nguyen K T, Joye C D, Rodgers J C, Jaynes R L, Chernyavskiy I A, Wood F N, Albright B S (Jr), Abe D K, Calame J P, Levush B, Pershing D E, Atkinson J, Kimura T, Demonstration of a W-band Traveling-Wave Tube Power Amplifier with 10-GHz Bandwidth, IEEE Trans Electron Devices, 68(2021)2492–2498.
- Zhang X, Feng J, Cai J, Du Y, Dong R, Wu X, Power Enhancement in W-band Pulsed Folded Waveguide TWT, IEEE Trans Electron Devices, 68(2021)2492–2498.
- Ivanov A A, Nagornyuk M S, Smirnov A E, Rozental R M, Peskov N Yu, W-band Pulsed TWT Family with Different Output Power, 2019 IEEE Int Vac Electron Conf (IVEC), 2019; doi: 10.1109/IVEC44880.2019.
- Soric J, Kolias N, Saunders J, Kotce J, Brown A, Rodenbeck C, Gyurcsik R S, A 100-W W-band GaN SSPA, IEEE Microw Wirel Compon Lett, 32(2022)712–715.
- Cwiklinski M, Brückner P, Leone S, Friesicke C, Maßler H, Lozar R, Wagner S, Quay R, Ambacher O, D-Band and G-Band High-Performance GaN Power Amplifier MMICs, IEEE Trans Microw Theory Tech, 67(2019)5080–5089.
- Bian X, Pan P, Tang Y, Lu Q, Li Y, Zhang L, Wu X, Cai J, Feng J, Demonstration of a pulsed G-band 50-W Traveling Wave Tube, IEEE Trans Electron Devices, 42(2021)248–251.
- Jiang Y, Lei W, Hu P, Song R, Ma G, Chen H, Jin X, Demonstration of a 220-GHz Continuous Wave Traveling Wave Tube, IEEE Trans Electron Devices, 68(2021)3051–3055.
- Zhang C, Pan P, Cai J, Chen X, Tian H, Su S, Zhou K, Meng W, Li Y, Song B, Gong Y, Feng J, Demonstration of a PCM-Focused Sheet Beam TWT Amplifier at G-Band, IEEE Trans Electron Devices, 70(2023)2798–2803.
- Armstrong C M, Kowalczyk R, Zubyk A, Berg K, Meadows C, Chan D, Schoemehl T, Duggal R, Hinch N, True R B, Tobin R, Sweeney M, Weatherford B, A Compact Extremely High Frequency MPM Power Amplifier, IEEE Trans Electron Devices, 65(2018)2183–2188.
- Cwiklinski M, Brückner P, Leone S, Krause S, Friesicke C, Maßler H, Quay R, Ambacher O, First Demonstration of G-Band Broadband GaN Power Amplifier MMICs Operating Beyond 200 GHz, IEEE MTT-S International Microwave Symposium, (2020), 1017–1020; doi: 10.1109/IMS30576.2020.
- Bao M, Vassilev V, Gustafsson D, Zirath H, G-band Power Amplifiers in 130 nm InP Technology, IEEE 15th European Microwave Integrated Circuit Conference (EuMIC), 2021, 1–4; doi: 10.1109/EuMIC48047.202100013.
- Paoloni C, Gamzina D, Letizia R, Zheng Yuan, Luhmann N C (Jr), Millimeter wave traveling wave tubes for the 21st Century, J Electromagn Waves Appl, 35(2021)567–603.
- Levush B, Abe D, Calame J, Cooke S, Jensen K, Larsen P, Pasour J, Shaw J, Vlasov A, Yater J, Nguyen K, Pershing D, Wright E, MMW to Upper-MMW Vacuum Electronics Research at NRL, 34th Conf. on Infrared, Millimeter, and Terahertz Waves, (2009); doi: 10.1109/ICIMW.2009.5325772.
- Srivastava A, Particle-in-Cell Simulation for W-Band Power Combiner Multi-Beam Planar Coupled-Cavity Backward Wave Oscillator, Eur J Adv Eng Technol, 2(2015)66–69.
- Bhattacharjee R, Srivastava A, Christie L, Enhance Performance of a W-Band Cascaded FWTWT’, IEEE 2nd Indian Conference on Antennas & Propagation (InCAP), 2019; doi: 10.1109/InCAP47789.2019.9134655.
- Antonsen T M (Jr), Chernyavaskiy I A, Chernin D, Vlasov A N, Advances in the Theory and Modeling of Linear Beam VE Amplifiers, IEEE Trans Electron Devices, 70(2023)2680–2692.
- Petillo J J, Cooke S J, Antonsen T M (Jr), Ovtchinnikov S G, Jensen A J, Nelson E M, Jensen K L, Levush B, First Principles Codes and Analysis Environments for Vacuum Electronics Simulation, IEEE Trans Electron Devices, 70(2023)2666–2679.
- Pettillo J, Ovtchinnikov S, Jensen A, Chernin D, Jabotinski V, Neison E, Stantchev G, Cooke S, Vlasov A, Held B, Bruss A, The Michelle Code: Advanced Emission, Multiple Design Environment Implementation, and High Energy Applications, 2021 IEEE Int Conf on Plasma Science (ICOPS), 2021; doi: 10.1109/ICOPS36761.2021.9588537.
- CST Studio Suite: Electromagnetic Field Simulation Software. Accessed: Dec. 10, 2023. [Online]: https://w3ds.com/productsservices/simulia/products/cst-studio-suite.
- Goplen A B L, Smith D, Warren G, User-configurable MAGIC for electromagnetic PIC calculations, Comput Phys Commun, 87(1995)54–86.
- Herrmannsfeldt A W B, EGUN-An electron optics and gun design program, SLAC, Stanford, CA, USA, Oct 1988.
- Field Precision LLC. Accessed: Dec 10, 2023. [Online]: https://www.fieldp.com/
- Accessed: Dec 10, 2023. [Online]: https://txcorp.com/vsim/
- Cadence: AWR Analyst Software. Accessed: Jan. 22, 2023. [Online]: https://www.cadence.com/en_US/home/tools/ system analysis/RF-microwave-design/awr-analyst-software.html.
- Solid Works is a Commercial CAD Software Package Developed by Dassault Systems. Accessed: Jan. 22, 2023. [Online]: Ansys. Accessed: Dec 10, 2023. [Online]: https://www.solidworks.com/
- Thermal analysis and simulation software is a Commercial CAD Software Package Developed by Dassault Systems Ansys. Accessed: Jan 22, 2023. [Online]: https://www.ansys.com/.
- Srivastava A, Christie L, Design of a high gain and high efficiency W-band folded waveguide TWT using phase-velocity taper, J Electromagn Waves Appl, 32(2018)1316–1327.
- Srivastava A, Penmetsa S, Christie L, Bhat K N, Electromagnetic design of a 220 GHz BWO with experimental study of micro-fabricated folded waveguide structure, J Electromagn Waves Appl, 33(2019)1860–1873.
- Jin Z, Liu W, Wang J, Zhang Z, Zhang F, Zhao K, Ou Y, Zhang Z, Zhao C, Zhang Z, Development of G-Band Continuous-Wave Folded Waveguide Traveling-Wave Tube, IEEE Trans Electron Device Lett, 51(2023)598–604.
- Chen J, Wang Z, Wang F, Gao C, Li J, Xie Q, Zi Z X, Cai J, Feng J, Demonstration of a Broadband W-Band Microwave Power Module with Improved Gain Flatness, IEEE Trans Electron Device Lett, 43(2022)1335–1338.
- Srivastava A, Numerical design of a 100 W, 38 dB gain, W-band multi-section serpentine waveguide vacuum electronic TWT, Int J Electron Commun, 82(2017)145–151.
- Nguyen K T, Vlasov A N, Ludeking L, Joye C D, Cook A M, Calame J P, Pasour J A, Pershing D E, Wright E L, Cooke S J, Levush B, Abe D K, Chernin D P, and Chernyavskiy I A, Design Methodology and Experimental Verification of Serpentine/Folded-Waveguide TWTs, IEEE Trans Electron Devices, 61(2014)1679–1686.
- Srivastava A, So J K, Sattorov M A, Kwon O J, Park G S, Baik C W, Kim J H, Chang S S, 100 GHz LIGA-Fabricated Coupled-Cavity Device, IEEE Int Vacuum Electron Conf (IVEC), 2009; doi: 10.1109/IVEC.2009.5193373.
- Field M, Kimura T, Atkinson J, Gamzina D, Luhmann, Jr N C, Stockwell B, Grant T J, Griffith Z, Borwick R, Hillman C, Brar B, Reed T, Rodwell M, Shin Y M, Barnett L R, Baig A, Popovic B, Domier C, Barchfield R, Zhao J, Higgins J A, Goren Y, Development of a 100-W 200-GHz High Bandwidth mm-Wave Amplifier, IEEE Trans Electron Devices, 65(2018)2122–2128.
- Zhang L, Jiang Y, Lei W, Hu P, Guo J, Song R, Tang X, Ma G, Chen H, Wei Y, A piecewise sine waveguide for terahertz traveling wave tube, Sci Rep, 12(2022)10449; doi: 1038/s41598-022-14587-y.
- Guo G, Zhang T, Zeng J, Yang Z, Yue L, Wei Y, Investigation and Fabrication of the Printed Microstrip Meander-Line Slow-Wave Structures for D-Band Traveling Wave Tubes, IEEE Trans Electron Devices, 69(2022)5229–5234.
- Paoloni C, Mineo M, 0.22 THz TWT based on the Double Corrugated Waveguide, IEEE Int Vacuum Electronic Conf, (2014); doi: 10.1109/IVEC.2014.6857573.
- Gamzina D, Li H, Himes L, Barchfeld R, Popovic B, Pan P, Letizia R, Mineo M, Feng J, Paoloni C, Luhmann N C (Jr), Nanoscale Surface Roughness Effects on THz Vacuum Electron Device Performance, IEEE Trans Nanotechnol, 15(2016)85–93.
- Baig A, Barnett L R, Gamzina D, Luhmann N C (Jr), MEMS compatible sever for 220 GHz ultra-wide band TWTA: Design and particle-in-cell analysis, Prog Electromagn Res Lett, 41(2013)135–148.
- Wan Y, Liu Q, Wang J, Wu Z, Li X, Luo Y, A Compact Mode-selective Attenuator to Suppress High-order Oscillations in Sheet Beam Traveling-wave Tube, 2021 22nd Int Vac Elect Conf (IVEC), 2021, doi: 10.1109/IVEC51707.2021.9722515.
- Zou X, Xue Q, Wang X, Design of a Matching Attenuator for 220GHz Folded Waveguide Traveling-wave Tube, 2019 Int Conf on Microwave and Millimeter Wave Tech (ICMMT), 2019; doi: 10. 1109.ICMMT45702.2019.8992840.
- Ives R L, Advanced Fabrication of Vacuum Electron Devices, IEEE Trans on Electron Devices, 70(2023)2693–2701.
- Cook A M, Wright E L, Nguyen K T, Joye C D, Wood F N, Albright B S, Lowe J R, Jaynes R T, Calame J P, Abe D K, Kimura T, W-band TWT Component Fabrication and Testing, 2019 Int Vac Elect Conf (IVEC), 2019; doi: 10.1109/IVEC.2019.8745362.
- Himes L, Gamzina D, Popovic B, Barchfeld R, Luhmann N C (Jr), Development of Nano Machining Techniques to Bridge the Terahertz Gap, 2016 Int Vac Elect Conf (IVEC), 2016; doi: 10.1109/IVEC.2016.7561802.
- Burtsev A A, Bushuev N A; Navrotsky I A, Sakhadzhi G V, Shalaev P D, Grigorie Y A, Experimental study of electron guns for TWT of terahertz range, Proceedings IEEE International Vacuum Electronics Conference, 2015. doi. 10.1109/IVEC.2015.7223751.
- Bhardwaj R K, Sudhamani H S, Dutta V P, and Bhatnagar N, Micromachining and Characterisation of Folded Waveguide Structure at 0.22THz, J Infrared Millim Terahertz Waves, 42(2021)229–238; doi:10.1007/s10762-021-00767-w.
- Joye C D, Calame J P, Nguyen K T, Garven M, Microfabrication of fine electron beam tunnels using UV-LIGA and embedded polymer monofilaments for vacuum electron devices, J Micromech Microeng (IOP), 22(2012) 015010-015020; doi: 10.1088/0960-1317/22/1/015010.
- Jang K H, Kim J H, Kim G J, Kim J I, Choi J J, Experiments for sub-THz wave Folded Waveguide Traveling -Wave Tube Amplifier, J Electromagn Eng Sci, 23(2023)122–128.
- Srivastava A, Pedenkar J J, Purandare R C, Devi P D, Bhat K S, Joshi M, UV-LIGA Microfabrication of Serpentine Waveguide Mold with Thick SU-8 Photoresists for Millimeter Wave TWT, ISSS National Conference on MEMS, Smart Materials, Structures and Systems, (2013); doi: 10.13140/2.1.2950.7365.
- Starodubov A, Galkin A, Nozhkin D, Galushka V, Bessonov D, Ryskin N, Tuzhilin D, Laser-Based Technologies for Microfabrication of Key Electromagnetic Components of Miniaturized Vacuum Electron Devices, 2023 Int Vac Elect Conf (IVEC), (2023); doi: 10.1109/IVEC56627.2023.10157320.
- Cook A M, Joye C D, Jaynes R L, Calame J P, W-band TWT Circuit Fabricated by 3D-Printed Mold Electroforming, Int Vac Elect Conf (IVEC), (2018); doi: 10.1109/IVEC.2018.8391511.
- Behroodi E, Latifi H, Bagheri Z, Ermis E, Roshani S, Moghaddam M S, A combined 3D printing/CNC micro‑milling method to fabricate a large‑scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production, Sci Rep, 10(2020)22171; doi: 10.1038/s41598-020-79015-5.
- Cook A M, Joye C D, Calame J P, W-Band and D-Band Traveling-Wave Tube Circuits Fabricated by 3D Printing, IEEE Access, 7(2019)72561–72566.
- Hwu R J, Kress D K, Judd S V, Sadwick L P, 3D Printing Additive Manufacturing of W-band Vacuum Tube Parts, 2016 Int Vac Elect Conf (IVEC), (2016); doi: 10.1109/IVEC.2016.7561802.
- Lanza G, Nantista C, Gamzina D, Ledford C, Horn T, Carriere P, and Frigola P, Outgassing of Electron Beam Printed Copper, 2021 Int Vac Elect Conf (IVEC), (2021); doi: 10.1109/IVEC51707.2021.9722518.
- Cook A M, Wright E L, Nguyen K T, Joye C D, Rodgers J C, Jaynes R L, Atkinson J, Kimura T, A High-Current-Density Electron Beam for Millimeter-Wave Amplifiers, IEEE Trans Electron Devices, 68(2021)3040–3044.
- Ou Y, Liu W, Zhao K, Jin Z, Wei Y, Yang Z, Yin W, Optimum Design of Electron Gun for 0.22-THz Traveling Wave Tubes, IEEE Trans on Microwave Theory and Tech, 70(2021); doi: 10.1109/TMTT.2021.3099406.
- Jiang S, Wang X, Zhang X, Lyu Z, Wang Z, Gong H, Gong Y, Duan Z, Experimental Investigation of an Electron-Optical System for Terahertz Traveling-Wave Tubes, IEEE Trans Electron Devices, 68(2021)6498–6504.
- Singh A K, Shukla S K, Ravi M, Barik R K, A Review of Electron Emitters for High-Power and High-Frequency Vacuum Electron Devices, IEEE Trans Plasma Sci, 48(2020)3446–454.
- Li L, Srivastava A, Wang Y, Wang J, So J K, Park G S, Development of High-Current Sheet Beam Cathodes for Terahertz Sources, IEEE Trans Electron Devices, 56(2009)762–768.
- Srivastava A, So J K, Wang Y, Wang J, Raju R S, Park G S, Design of Sheet-Beam Electron Gun with Planar Cathode for Terahertz Devices, J Infrared Millim Terahertz Waves, 30 (2009) 670–678.
- Li Y, Wen Z, Wang X, Fan Y, Luo J, Zhu M, Guo W, Ding Y, A Sheet Beam Electron Gun with High Compression Ratio and Long Transmission Distance Performance for W-Band TWT Applications, IEEE Trans Plasma Science, 49(2021)734–741.
- Danilushkin A V, Burtsev A A, Shumikhin K V, Sakhadzhi G V, Development of the sheet electron beam focusing system based on thermionic and field emission cathodes, IOP Conf Series: J Phys, 1124 (2018) 071016; doi:10.1088/1742-6596/1124/7/071016.
- Navrotsky I A, Burtsev A A, Emelyanov V V, Titov V N, Ryskin N M, Electron-Optic System with a Converged Sheet Electron Beam for a 0.2-THz Traveling-Wave Tube, IEEE Trans Electron Devices, 68(2021)798–803.
- Ruan C, Wang P, Zhang H, Su Y, Dai J, Ding Y, Zhang Z, Design of planar distributed three beam electron gun with narrow beam separation for W band staggered double vane TWT, Sci Rep, 11(2021)940; doi: 10.1038/s41598-020-80276-3.
- Burtsev A A, Bushuev N A, Navrotsky I A, Sakhadzhi G V, Shalaev P D, Experimental Study of Electron Guns for TWT of Terahertz Range, 2015 Int Vac Elect Conf (IVEC), (2015); doi:10.1109/IVEC.2015.7223751.
- Liang H, Xue Q, Ruan C, Feng J, Wang S, Liu X, Zhang Z, Integrated Planar Three-Beam Electron Optics System for 220-GHz Folded Waveguide TWT, IEEE Trans Electron Devices, 65(2018)270–276.
- Srivastava A, So J K, Jang K H, Sattorov M A, Park G S, Sharma R K, Joshi S N, Wang Y, Wang J, Experimental study on electron guns with high current density beams for THz devices, 2007, Int Vac Elect Conf (IVEC), 2007; doi: 10.1109/IVELEC.2007.4283371.
- Rui L, Wang J, Liu Z, Jiang W, Liu G, Wu Z, Luo Y, Electron Gun Thermal Depended Properties, Analysis of a High-Power W-Band Sheet Beam Extended Oscillator, IEEE Trans on Electron Devices, 67(2020)684–689.
- Choi W, Lee I, Shin J, Choi E M, Stability Analysis of 300-GHz Sheet Electron Beam Transport in a Periodic Rectangular Quadrupole, IEEE Trans on Plasma Sci, 49(2021)1121–1127.
- Wu Y, Liu S, Xie Q, Chen Z, Zi Z, Cai J, Feng J, A Magnetic Structure for Reducing the Transverse Field of C-Magnet, IEEE Electron Device Lett, 44(2023)1892–1894.
- Ji H, Yang J, Sun R, Cai J, Pan P, Feng J, Planar-Integrated PPM Focusing System Design for W-Band Multibeam Folded Waveguide TWTs, IEEE Trans on Electron Devices, 70(2023)6594–6599.
- Cook A M, Joye C D, Kimura T, Wright E L, Calame J P, Broadband 220-GHz Vacuum Window for a Traveling-Wave Tube Amplifier, IEEE Trans on Electron Devices, 60(2013)1257–1259.
- Srivastava A, Kwon O J, Bera A, Sattorov M, Sharma A, Tanwar A, Park G S, Broadband THz Vacuum Window using Impedance Matching Approach, 35th Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), (2010), We-P 62; doi: 10.1109/ICIMW.2010.5612713.
- Lyu1 Z, Wang Z, Dong J, Qu Z, Han M, Jiang S, Chen X, Tang T, Gong Y, Zhang Z, Duan Z, A Broadband Sapphire Disc Pillbox Window for Terahertz Traveling-Wave Tubes, 24th Int Vac Elect Conf (IVEC), (2023); doi: 1109/IVEC56627.2023.10157935.
- Cai J, Hu L, Ma G, Jin X, Chen H, Theoretical and Experimental Study of the Modified Pill-Box Window for the 220-GHz Folded Waveguide BWO, IEEE Trans on Plasma Sci, 42(2014)3349–3357.
- Serov E A, Parshin V V, Vlasova K V, and Makarov A I, Modern Dielectric Materials for Output Windows of High-Power Microwave and Terahertz Sources, J Infrared Millim Terahertz Waves, 41(2020)1450–1459.
- Srivastava A, Kwon O J, Bera A, Sattorov M, Park G S, Dielectric Measurement of Low Loss-Tangent Dielectric near 100 GHz by a Simplified Hemispherical Open Resonator Technique, 35th Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), (2010) Tu-P 49; doi: 10.1109/ICIMW.2010.5613059.
- Yang T, Guan X, Fu W, Lu D, Zhang C, Xie J, Yuan X, Yan Y, Over-Size Pill-Box Window for Sub-Terahertz Vacuum Electronic Devices, Electronics, 10(2021)653; doi: 10.3390/electronics10060653.
- Chen Z, Wang Y, Investigation of 0.14THz Pill-box Window for Folded Waveguide TWT, IEEE Int Vac Elect Conf (IVEC), (2013); doi: 10.1109/IVEC56627.2013.6571174.
- Zechun S, Zhiqiang G, Pengchao H, Zhilong Z, Zingbo L, Hui W, Qiang L, Xingda L, The optimization design for a diamond window in W band TWT, IEEE Int Vac Elect Conf (IVEC), (2015); doi: 10.1109/IVEC56627.2015.7223993.
- Zhang Y, Wan Y, Du H, Liu Y, Li H, Xiao J, Song Q, Chen Y, Wang Z, Guo R, Wang S, Gong H, Design and Experiment of Terahertz Pillbox Window, IEEE Int Vac Elect Conf (IVEC), (2023); doi: 10.1109/IVEC56627.2023.10157271.