Asian Journal of Physics Vol 31, No 7 (2022) 689-696

Tailoring spatial light coherence: scalar scenario

R Martínez-Herrero1, G Piquero1, J C G deSande2, M Santarsiero3 and F Gori3
1Departamento de Óptica, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
2ETSIS de Telecomunicación, Campus Sur, Universidad Politécnica de Madrid, 28031 Madrid, Spain
3Dipartimento di Ingegneria Industriale, Elettronica e Meccanica, Università Roma Tre, Via V. Volterra 62,00146 Rome, Italy

Dedicated to Prof Maria J Yzuel


The purpose of this paper is to summarize the most relevant contributions of the authors in recent years on the topic of light beams with unconventional spatial coherence characteristics. Scalar models of light sources with special coherence characteristics are presented. © Anita Publications. All rights reserved.
Keywords: Coherence, Structured light, Shape-invariant fields.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Wang F, Cai Y, Experimental generation of a partially coherent flat-topped beam, Opt Lett, 33(2008)1795–1797.
  2. Ramírez-Sánchez V, Piquero G, Santarsiero M, Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern, Opt Commun, 283(2010)4484–4489.
  3. Zhao C, Cai Y, Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam, Opt Lett, 36(2011)2251–2253.
  4. Lajunenand H, Saastamoinen T, Propagation characteristics of partially coherent beams with spatially varying correlations, Opt Lett, 36(2011)4104–4106.
  5. Li X, Wang F, Cai Y, An alternative model for a partially coherent elliptical dark hollow beam, Opt Laser Technol, 43(2011)577–585.
  6. Liu X, Shen Y, Liu L, Wang F, Cai Y, Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam, Opt Lett, 38(2013)5323–5326.
  7. Cai Y, Chen Y, Wang F, Generation and propagation of partially coherent beams with nonconventional correlation functions: a review, J Opt Soc Am A, 31(2014)2083–2096.
  8. Rodenburg B, Mirhosseini M, Magaña-Loaiza O S, Boyd R W, Experimental generation of an optical field with arbitrary spatial coherence properties, ,J Opt Soc Am A, 31(2014)A51–A55.
  9. Chen Y, Ponomarenko S A, Cai Y, Experimental generation of optical coherence lattices, Appl Phys Lett, 109 (2016) 061107; doi.org/10.1063/1.4960966.
  10. Hyde M W, Bose-Pillai S R, Wood R A, Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror, Appl Phys Lett, 111(2017) 101106; doi.org/10.1063/1.4994669.
  11. Cai Y, Chen Y, Yu J, Liu X, Liu L, Generation of Partially Coherent Beams, Prog Opts, 62(2017)157–223.
  12. Martínez-Herrero R, Maluenda D, Piquero G, de Sande J C G, Santarsiero M, Gori F, Partially polarized pseudo-Schell model sources, in Third International Conference on Applications of Optics and Photonics,vol.10453, International Society for Optics and Photonics, (SPIE, 2017), p.398–403; doi.org/10.1117/12.2272154.
  13. deSande J C G, Santarsiero M, Piquero G, Spirally polarized beams for polarimetry measurements of deterministic and homogeneous samples, Opt Lasers Eng, 91(2017)97–105.
  14. Xu H.-F, Zhou Y, Wu H.-W, Chen H.-J, Sheng Z.-Q, Qu J, Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams, Opt Express, 26(2018)20076–20088.
  15. Wu D, Wang F, Cai Y, High-order nonuniformly correlated beams, Opt Laser Technol, 99(2018)230–237.
  16. Senthilkumar M, Rajesh K, Udhayakumar M, Jaroszewicz Z, Mahadevan G, Focusing properties of spirally polarized sinh Gaussian beam, Opt LaserTechnol, 111(2019)623–628.
  17. Hyde M W, Xiao X,Voelz D G, Generating electromagnetic nonuniformly correlated beams, Opt Lett, 44(2019) 5719–5722.
  18. Piquero G, Martínez-Herrero R, de Sande J C G, Santarsiero M, Synthesis and characterization of non-uniformly totally polarized light beams: tutorial, J Opt Soc Am A, 37(2020)591–605.
  19. Yu J, Zhu X, Lin S, Wang F, Gbur G, Cai Y, Vector partially coherent beams with prescribed non-uniform correlation structure, Opt Lett, 45(2020)3824–3827.
  20. Shen Y, Sun H, Peng D, Chen Y, Cai Q, Wu D, Wang F, Cai Y, Ponomarenko S A, Optical image reconstruction in 4f imaging system: Role of spatial coherence structure engineering, Appl Phys Lett, 118(2021) 181102; doi.org/10.1063/5.0046288.
  21. De Sande J C G, Piquero G, Suárez-Bermejo J C, Santarsiero M, Mueller Matrix Polarimetry with Invariant Polarization Pattern Beams, Photonics, 8(2021)491; doi.org/10.3390/photonics8110491.
  22. Korotkova O, Gori F, Introduction to the Special Issue on Structured Light Coherence, Photonics, 8(2021) 457; doi.org/10.3390/photonics8100457.
  23. Santarsiero M, Martínez-Herrero R, Maluenda D, de Sande J C G, Piquero G, Gori F, Partially coherent sources with circular coherence, Opt Lett, 42(2017)1512–1515.
  24. Santarsiero M, Martínez-Herrero R, Maluenda D, de Sande J C G, Piquero G, Gori F, Synthesis of circularly coherent sources, Opt Lett, 42(2017)4115–4118.
  25. Chen X, Li J, Rafsanjani S M H, Korotkova O, Synthesis of Im-Bessel correlated beams via coherent modes,, Opt Lett, 43(2018)3590–3593.
  26. Piquero G, Santarsiero M, Martínez-Herrero R, de Sande J C G, Alonzo M, Gori F, Partially coherent sources with radial coherence, Opt Lett, 43(2018)2376–2379.
  27. De Sande J C G, Martínez-Herrero R, Piquero G, Santarsiero M, Gori F, Pseudo-Schell model sources, Opt Express, 27(2019)3963–3977.
  28. Martínez-Herrero R, Piquero G, de Sande J C G, Santarsiero M, Gori F, Besinc Pseudo-Schell Model Sources with Circular Coherence, Appl Sci, 9(2019)2716; doi.org/10.3390/app9132716.
  29. Santarsiero M, Martínez-Herrero R, Piquero G, de Sande J C G, Gori F, A New Type of Shape-Invariant Beams with Structured Coherence: Laguerre-Christoffel-Darboux Beams, Photonics, 8(2021)134; doi.org/10.3390/photonics8040134.
  30. Korotkova O, Gbur G, Chapter four Applications of optical coherence theory, in a Tribute to Emil Wolf, Progress in Optics, (ed) Visser T D, (Elsevier), 65(2020)43–104.
  31. Mandel L, Wolf E, Optical Coherence and Quantum Optics, (Cambridge University Press), 1995.
  32. Gori F, Santarsiero M, Devising genuine spatial correlation functions, Opt Lett, 32(2007)3531–3533.
  33. Martínez-Herrero R, Mejías P M, Gori F, Genuine cross-spectral densities and pseudo-modal expansions, Opt Lett, 34(2009)1399–1401.
  34. Santarsiero M, Gori F, Borghi R, Guattari G, Modal expansion of thin annular sources with Schell-model angular correlation function, J Opt, 14(2012)035701; doi.org/10.1088/2040-8978/14/3/035701.
  35. Wolf E, Unified theory of coherence and polarization of random electromagnetic beams, Phys Lett A, 312(2003) 263–267.
  36. Abramowitz M, Stegun I (eds), Handbook of mathematical functions, (Dover Publications Inc), 1972.
  37. Ding C, Koivurova M, Turunen J, Pan L, Self-focusing of a partially coherent beam with circular coherence, J Opt Soc Am A, 34(2017)1441–1447.
  38. Zhu X, Yu J, Chen Y, Wang F, Korotkova O, Cai Y, Experimental synthesis of random light sources with circular coherence by digital micro-mirror device, Appl Phys Lett, 117(2020)121102; doi.org/10.1063/5.0024283.
  39. Collett E, Wolf E, Is complete spatial coherence necessary for the generation of highly directional light beams? Opt Lett, 2(1978)27–29.
  40. Martínez-Herrero R, Expansion of complex degree of coherence, Nuovo Cimento B, 54(1979)205; doi.org/10.1007/BF02908236.
  41. De Santis P, Gori F, Guattari G, Palma C, An example of a Collett-Wolf source, Opt Commun, 29(1979)256–260.
  42. Gori F, Collett-Wolf sources and multimode lasers, Opt Commun, 34(1980)301–305.
  43. Friberg A T, Sudol R J, Propagation parameters of Gaussian-Schell-model beams, Opt Commun, 41(1982)383–387.
  44. Gori F, Mode propagation of the field generated by Collett-Wolf Schell-model source, Opt Commun, 46(1983)149–154.
  45. Martínez-Herrero R, Mejías P M, Radiometric definitions for partially coherent sources, J Opt Soc Am A, 1(1984)556–558.
  46. Serna J, Mejías P M, Martínez-Herrero R, Beam Quality Dependence on the Coherence Length of Gaussian Schell-model fields Propagating Through ABCD Optical Systems, J Mod Opt, 39(1992)625–635.
  47. Tervonen E, Turunen J, Friberg A T, Gaussian Schell-model beams generated with synthetic acousto-optic holograms, J Opt Soc Am A, 9(1992)796–803.
  48. Martínez-Herrero R, Mejías P M, Expansion of the cross-spectral density function of general fields and its application to beam characterization, Opt Commun, 94(1992)197–202.
  49. Wolf E, Introduction to the Theory of Coherence and Polarization of Light, (Cambridge University Press), 2007.
  50. Gori F, Martínez-Herrero R, Reproducing Kernel Hilbert spaces for wave optics: tutorial, J Opt Soc Am A, 38(2021)737–748.
  51. Martínez-Herrero R, Gori F, Christoffel–Darboux sources, Opt Lett, 46(2021)973–976.
  52. Martínez-Herrero R, Santarsiero M, Piquero G, González de Sande J C, A new type of shape-invariant beams with structured coherence: Laguerre-Christoffel-Darboux beams, Photonics, 8(2021)134; doi.org/10.3390/photonics8040134.