Asian Journal of Physics  Vol. 31 No 2, 2022, 391-399

The characteristics of the carbon nanotubes layer deposited by the electrophoretic method on a titanium substrate studied by Raman micro-spectroscopy and nanoindentation
Maria Pajda, Aleksandra Wesełucha-Birczyńska, Sylvia Turrell, Aleksandra Benko and Marta Blażewicz


Abstract

The multi-walled carbon nanotubes (MWCNT) layer deposited on the titanium surface in an electrophoretic process for 30 s and at a voltage of 30 V was investigated by Raman spectroscopy. The layer structure was analyzed by the depth scanning method. Some differences have been noticed between the top and bottom surfaces of the tested layer, i. e, at the MWCNTs / air interface and the MWCNTs / Ti interface, respectively. The MWCNTs / air interface shows the character of a graphite-like layer, probably due to the presence of shells with a large diameter, while the boundary at the interface of the MWCNTs layer with titanium indicates a characteristic of MWCNTs due to the G-band splitting and its dispersion. The observed shift of the G’-band towards the higher wavenumbers indicates a compressive strain on the layer of carbon nanotubes in contact with the titanium substrate. The measurements of the hardness of the obtained layer showed that the reaction of the material is much more plastic, because plastic work exceeds the value of elastic work up to 5 times. © Anita Publications. All rights reserved.
Keywords: Multi-walled carbon nanotubes (MWCNTs) layer, Electrophoretic deposition (EPD), Raman microspectroscopy, Nanoindentation.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Anderson P J, Comprehensive Biomaterials, (Elsevier, Amsterdam), 2011, p 5.
  2. Sorrell C C, Taib H, Palmer T C, Peng F, Xia Z, Wie M, Biological and Biomedical Coatings Handbook Processing and Characterization, (CRC Press, USA), 2011, p 82.
  3. Karthik B M, Gowrishankar M C, Sharma S, Hiremath P, Shettar M, Shetty N, Coated and uncoated reinforcements metal matrix composites characteristics and applications – A critical review, Cogent Eng, 7(2020)1856758; doi.org/10.1080/23311916.2020.1856758.
  4. Han Z J, Rider A E, Fisher C, van der Laan T, Kumar S, Levchenko I, Ostrikov K, Carbon Nanotubes and Graphene, (Elsevier, Amsterdam), 2014, p 279.
  5. Munir K S, Wen C, Li Y, Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: a review, Adv Biosyst, 3 (2019) 1800212; doi. 10.1002/adbi.201800212.
  6. Frączek-Szczypta A, Dlugoń E, Wesełucha-Birczyńska A, Nocuń M, Błażewicz M, Multi walled carbon nanotubes deposited on metal substrate using EPD technique. A spectroscopic study, J Mol Struct, 1040(2013)238–245.
  7. Shvedova A A, Kisin E R, Porter D, Schulte P, Kagan V E, Fadeel B, Castranova V, Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus?, Pharmacol Ther, 121(2009)192–204.
  8. Boccaccini A R, Cho J, Roether J A, Thomas B J C, Minay E J, Shaffer M S P, Electrophoretic deposition of carbon nanotubes, Carbon, 44 (2006)3149–3160.
  9. Benko A, Przekora A, Wesełucha-Birczyńska A, Nocuń M, Ginalska G, Błażewicz M, Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization, Appl Phys A, 122(2016)447; doi.org/10.1007/s00339-016-9984-z.
  10. Wesełucha-Birczyńska A, Stodolak-Zych E, Piś W, Długoń E, Benko A, Błażewicz M, A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD). 2D correlation analysis, J Mol Struct, 1124(2016)61–70.
  11. Ferrari A C, Robertson J, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond, Phil Trans Roy Soc Lond, 362(2004)2477; doi.org/10.1098/rsta.2004.1452.
  12. Wesełucha-Birczyńska A, Stodolak-Zych E, Turrell S, Cios F, Krzuś M, Długoń E, Benko A, Niemiec W, Błażewicz M, Vibrational spectroscopic analysis of a metal/carbon nanotube coating interface and the effect of its interaction with albumin, Vib Spectrosc, 85(2016)185–195.
  13. Beyssac O, Goffe B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim Acta, A59(2003)2267–2276.
  14. Heise H M, Kuckuk R, Ojha A K, Srivastava A, Srivastava V, Asthanac B P, Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite, J Raman Spectrosc, 40(2009)344–353.
  15. Dresselhaus M S, Dresselhaus G, Saito R, Jorio A, Raman spectroscopy of carbon nanotubes, Phys Rep, 409 (2005) 47–99.
  16. Ferrari A C, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev B, 61(2000)14095; doi.org/10.1103/PhysRevB.61.14095.
  17. Lehman J H, Terrones M, Mansfield E, Hurst K E, Meunier V, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 49(2011)2581_2602.
  18. Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M, Origin of dispersive effects of the Raman D band in carbon materials, Phys Rev B, 59(1999)R6585; doi.org/10.1103/PhysRevB.59.R6585.
  19. Ferrari A C, Robertson J, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys Rev B, 64(2001)075414; doi.org/10.1103/PhysRevB.64.075414.
  20. Wesełucha-Birczyńska A, Babeł K, Jurewicz K, Carbonaceous materials for hydrogen storage investigated by 2D Raman correlation spectroscopy, Vib Spectrosc, 60(2012)206–211.
  21. Antunes E, Lobo A O, Corat E J, Trava-Airoldi V, Martin A, Verissimo C C, Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation, Carbon, 44(2006)2202–2211.
  22. Cooper C A, Young R J, Halsall M, Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy, Composites A, 32(2001)401–411.
  23. Wesełucha-Birczyńska A, Długoń E, Kołodziej A, Bilska A, Sacharz J, Błażewicz M, Multi-wavelength Raman microspectroscopic studies of modified monwoven carbon scaffolds for tissue engineering applications, J Mol Struct, 1220(2020) 128665; doi.org/10.1016/j.molstruc.2020.128665.
  24. Wesełucha-Birczyńska A, Morajka K., Stodolak-Zych E, Długoń E, Dużyja M, Lis T, Gubernat M, Ziąbka M, Błażewicz M, Raman studies of the interactions of fibrous carbon nanomaterials with albumin, Spectrochim Acta A, 196(2018)262-267.
  25. Jorio A, Pimenta M A, Souza Filho A G, Saito R, Dresselhaus G, Dresselhaus M S, Characterizing carbon nanotube samples with resonance Raman scattering , New J Phys, 5 (2003)139.1–139.17.
  26. Zhao Q, Wagner H D, Raman spectroscopy of carbon–nanotube–based composites, Phil Trans R Soc Lond A, 362(2004)2407–2424.

Article