Asian Journal of Physics  Vol. 31 No 2, 2022, 265-281

The use of thin layer chromatography combined with surface-enhanced Raman spectroscopy for the identification of controlled substances
Kasey R Cargill, Marisia A Fikiet, and Brooke W Kammrath


This research evaluates the method of thin layer chromatography coupled with surface-enhanced Raman spectroscopy (TLC-SERS) for the purpose of separating and identifying seized drugs. This technique adheres to the current protocols for the identification of controlled substances that are used by forensic laboratories and detailed in ASTM E2329- 17 [1]. TLC is a well-established and commonly used method for the analysis of controlled substances, however it is a presumptive test that requires additional techniques to make a positive identification. SERS is a relatively new technique in forensic science, and is finding increasing acceptance because of notable published research on its capabilities for material identification. SERS corrects for the two main disadvantages of normal Raman spectroscopy: low sensitivity and fluorescence. Alone, each technique has its limitations, but together, they provide a sensitive and selective method for the separation and positive identification of seized drugs. Analyzing illicit drugs mixtures using TLC-SERS involves separating mixtures on a TLC plate then, through the addition of a metallic nanoparticle colloid, identifying the components directly from that TLC plate using Raman spectroscopy. Furthermore, TLC-SERS requires less time, materials, and sample when compared to other methods of drug analysis. In this research, two gold and three silver nanoparticle colloids were evaluated for the identification of ten drugs (amphetamine, caffeine, cocaine, codeine, diazepam, flunitrazepam, lidocaine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), and phenobarbital) by TLC-SERS. One silver colloid preparation was shown to be superior for the identification of controlled substances by TLC-SERS. Ultimately, this research demonstrates that TLC-SERS is a rapid, reliable, and repeatable way to separate and identify a wide range of controlled substances. © Anita Publications. All rights reserved.
Keywords: TLC-SERS; Controlled Substances; Forensic Science.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved


  1. ASTM E2329-17, Standard Practice for Identification of Seized Drugs, ASTM International, West Conshohocken, PA, 2017,
  2. World Drug Report 2021 (United Nations publication, Sales No. E.21.XI.8).
  3. Gallagher P M, Illegal Drugs: A Complete Guide to Their History, Chemistry, Use and Abuse, (Sagebrush Press, New York), 2001.
  4. Henzel U B, Zeiss C, Potential and experience in quantitative “high performance thin-layer chromatography, J Chromatogr Libr, 9(1977)147–188.
  5. Cañamares M V, Feis A, Surface-enhanced Raman spectra of the neonicotinoid pesticide thiacloprid, J Raman Spectrosc, 44(2013)1126–1135.
  6. Zhu Q, Cao Y, Cao Y, Chai Y, Lu F, Rapid on-site TLC–SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements, Anal Bioanal Chem, 406(2014)1877–1884.
  7. Zhu Q X, Cao Y B, Cao Y Y, Lu F, Rapid Detection of Four Antipertensive Chemicals Adulterated in Traditional Chinese Medicine for Hypertension Using TLC-SERS, Spectrosc Spect Anal, 34(2014)990–993.
  8. Lv D, Cao Y, Lou Z, Li S, Chen X, Chai Y, Lu F, Rapid on-site detection of ephedrine and its analogues used as adulterants in slimming dietary supplements by TLC-SERS, Anal Bioanal Chem, 407(2015)1313–1325.
  9. Zhu Q, Cao Y, Li D, Fang F, Lu F, Yuan Y, A fast response TLC-SERS substrate for on-site detection of hydrophilic and hydrophobic adulterants in botanical dietary supplements, New J Chem, 43(2019)13873–13880.
  10. Lucotti A, Tommasini M, Casella M, Morganti A, Gramatica F, Zerbi G, TLC–surface enhanced Raman scattering of apomorphine in human plasma, Vib Spectrosc, 62(2012)286–291.
  11. Smith E, Dent G, Modern Raman Spectroscopy: A Practical Approach, (John Wiley & Sons Ltd, West Sussex, England), 2005
  12. Skoog D A, Holler F J, Crouch S R, Principles of instrumental analysis, (Cengage Learning, Boston), 2017.
  13. Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG), Supplemental document SD-2 for part IVB, quality assurance/validation of analytical methods, 2006.
  14. Jeanmaire D L, Van Duyne R P, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J Electroanal Chem Interf Electrochem, 84(1977)1–20.
  15. Sharma B, Frontiera R R, Henry A, Ringe E, VanDuyne R P, SERS: Materials, applications, and the future, Mater Today, 15(2012)16–25.
  16. Stiles P L, Dieringer J A, Shah N C, Van Duyne R P, Surface-Enhanced Raman Spectroscopy, Annu Rev Anal Chem, 1(2008)601–626.
  17. Lombardi J R, Birke R L, A unified approach to surface-enhanced Raman spectroscopy, J Phys Chem C, 112(2008)5605–17.
  18. Lombardi J R, Birke R L, A unified view of surface-enhanced Raman scattering, Accounts Chem Res, 42(2009)734–42.
  19. Ruperez A, Montes R, Laserna J J, Identification of stimulant drugs by surface-enhanced Raman spectrometry on colloidal silver, Vib Spectrosc, 2(1991)14–154.
  20. Barber T E, List M S, Haas III J W, Wachter E A, Determination of nicotine by surface-enhanced Raman scattering (SERS), Appl Spectrosc, 48(1994)1423–1427.
  21. Ishikawa H, Imai Y, Kurokawa Y, Preparation of Ag particle-doped cellulose acetate gel membrane as a surface-enhanced Raman scattering active substrate, Vib Spectrosc, 8(1995)445–449.
  22. Sulk R A, Corcoran R C, Carron K T, Surface-enhanced Raman scattering detection of amphetamine and methamphetamine by modification with 2-mercaptonicotinic acid, Appl Spectrosc, 53(1999)954–959.
  23. Sagmuller B, Schwarze B, Brehm G, Schneider S, Application of SERS spectroscopy to the identification of (3, 4-methylenedioxy) amphetamine in forensic samples utilizing matrix stabilized silver halides, Analyst, 126(2001)2066–2071.
  24. Faulds K, Smith W E, Graham D, Lacey R J, Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS), Analyst, 127(2002)282–286.
  25. Sagmuller B, Schwarze B, Brehm G, Trachta G, Schneider S, Identification of illicit drugs by a combination of liquid chromatography and surface-enhanced Raman scattering spectroscopy, J Mol Struct, 661-662(2003)279–290.
  26. Trachta G, Schwarze B, Brehm G, Schneider S, Hennemann M, Clark T, Near-infrared Fourier transform surface-enhanced Raman scattering spectroscopy of 1, 4-benzodiazepine drugs employing gold films over nanospheres, J Raman Spectrosc, 35(2004)368–383.
  27. Day J S, Edwards H G M, Dobrowski S A, Voice A M, The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints, Spectrochim Acta, A60(2004)563–568.
  28. Day J S, Edwards H G M, Dobrowski S A, Voice A M, The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints, Spectrochim Acta, A60(2004)172–1730.
  29. Cîntǎ Pînzaru S, Pavel I, Leopold N, Kiefer W, Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering, J Raman Spectrosc, 35(2004)338–346.
  30. Trachta G, Schwarze B, Sägmüller B, Brehm G, Schneider S, Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine, J Mol Struct, 693(2004)175–185.
  31. Ryder A G, Surface enhanced Raman scattering for narcotic detection and applications to chemical biology, Curr Opin Chem Biol, 9(2005)489–493.
  32. Jung J, Choo J, Kim D J, Lee S, Quantitative determination of nicotine in a PDMS microfluidic channel using surface enhanced Raman spectroscopy, Bull Korean Chem Soc, 27(2006)277–280.
  33. Bell S E J, Fido L A, Sirimuthu N M S, Speers S J, Peters K L, Cosbey S H, Screening tablets for DOB using surface-enhanced Raman spectroscopy, J Forensic Sci, 52(2007)1063–1067.
  34. Sanles-Sobrido M, Rodriguez-Lorenzo L, Lorenzo-Abalde S, Gonzalez-Fernandez A, Correa-Duarte M A, Alvarez-Puebla R A, Liz-Marzan L M, Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: the case of cocaine, Nanoscale, 1(2009)153–158.
  35. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos J V, Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering, Langmuir, 26(2010)14663–14670.
  36. Farquharson S, Shende C, Sengupta A, Huang H, Inscore F, Rapid detection and identification of overdose drugs in saliva by surface-enhanced Raman scattering using fused gold colloids, Pharmaceutics, 3(2011)425–439.
  37. Inscore F, Shende C, Sengupta A, Huang H, Farquharson S, Detection of drugs of abuse in saliva by surface-enhanced Raman spectroscopy (SERS), Appl Spectrosc, 65(2011)1004–1008.
  38. Berg R W, Norbygaard T, White P C, Abdali S, Ab initio calculations and Raman and SERS spectral analyses of amphetamine species, Appl Spectrosc Rev, 46(2011)107–131.
  39. Rana V, Canamares M V, Kubic T, Leona M, Lombardi J R, Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodon, J Forensic Sci, 56(2011)200–207.
  40. Izquierdo-Lorenzo I, Alda I, Sanchez-Cortes S, Garcia-Ramos J V, Adsorption and detection of sport doping drugs on metallic plasmonic nanoparticles of different morphology, Langmuir, 28(2012)8891–8901.
  41. Izquierdo-Lorenzo I, Garcia-Ramos J V, Sanchez-Cortes S, Vibrational characterization and surface-enhanced Raman scattering detection of probenecid doping drug, J Raman Spectrosc, 44(2013)1422–1427.
  42. Doctor E L, McCord B, Comparison of aggregating agents for the surface-enhanced Raman analysis of benzodiazepines, Analyst, 138(2013)5926–5932.
  43. Andreou C, Hoonejani M R, Barmi M R, Moskovits M, Meinhart C D, Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics, ACS Nano, 7(2013)7157–7164.
  44. Taplin F, O’Donell D, Kubic T, Leona M, Lombardi J, Application of Raman spectroscopy, surface-enhanced Raman scattering (SERS), and density functional theory for the identification of phenethylamines, Appl Spectrosc, 67(2013)1150–1159.
  45. Yu W W, White I M, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection, Analyst, 138(2013)1020–1025.
  46. Mabbott S, Correa E, Cowcher D P, Allwood J W, Goodacre R, Optimization of parameters for the quantitative surface-enhanced raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer, Anal Chem, 85(2013)923–931.
  47. Dong R, Weng S, Yang L, Liu J, Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines, Anal Chem, 87(2015)2937–2944.
  48. Rodger C, Dent G, Watkinson J, Smith W E, Surface-enhanced resonance Raman scattering and near-infrared Fourier transform Raman scattering as in situ probes of ink jet dyes printed on paper, Appl Spectrosc, 54(2000)1567–1576.
  49. Seifar R M, Verheul J M, Ariese F, Brinkman U A, Gooiker C, Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks, Analyst, 126(2001)1418–1422.
  50. Wagner E, Clement S, Surface enhanced resonance Raman scattering (Serrs) spectroscopy—study on inks, Prob Forensic Sci, XLVI(2001)437–441.
  51. White P C, In situ surface enhanced resonance Raman scattering (SERRS) spectroscopy of biro inks-long-term stability of colloid treated samples, Sci Justice, 43(2003)149–152.
  52. Leona M, Stenger J, Ferloni E, Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art, J Raman Spectrosc, 37(2006)981–992.
  53. Leona M, Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering, PNAS, 106(2009)14757–14762.
  54. Geiman I, Leona M, Lombardi J R, Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks, J Forensic Sci, 54(2009) 947–52.
  55. Raza A, Saha B, Silver nanoparticles doped agarose disk: highly sensitive surface-enhanced Raman scattering substrate for in situ analysis of ink dyes, Forensic Sci Int, 233(2013)21–27.
  56. Luo Z, Smith J C, Goff T M, Adair J H, Castleman A W (Jr), Gold cluster coatings enhancing Raman scattering from surfaces: Ink analysis and document identification, Chem Phys, 423(2013)73–78.
  57. Buzzini P, Suzuki E, Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence, J Raman Spectrosc, 47(2015)16–27.
  58. Sylvia J M, Janni J A, Klein J D, Surface-enhanced Raman detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate landmines Spencer K M, Anal Chem, 72(2000)5834–5840.
  59. Moore D S, Recent Advances in Trace Explosives Detection Instrumentation, Sense Imaging, 8(2007)9–38.
  60. Fang X, Ahmad S R, Detection of explosive vapour using surface-enhanced Raman spectroscopy, Appl Phys B, 97(2009)723–726.
  61. Dasary S S R, Singh A K, Senapati D, Yu H, Ray P C, Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene, J Am Chem Soc, 131(2009)13806–13812.
  62. Chang C H, Ko H, Singamaneni S, Gunawidjaja R, Tsukruk V V, , Nanoporous membranes with mixed nanoclusters for Raman-based label-free monitoring of peroxide compounds, Anal Chem, 81(2009)5740–5748.
  63. Ko H, Chang S, Tsukruk V V, Porous substrates for label-free molecular level detection of nonresonant organic molecules, ACS Nano, 3(2009)181–188.
  64. Izake E L, Forensic and homeland security applications of modern portable Raman spectroscopy, Forensic Sci Int, 202(2010)1–8.
  65. Wackerbarth H, Salb C, Gundrum L, Niederkrüger M, Christou K, Beushausen V, Viöl W, Detection of explosives based on surface-enhanced Raman spectroscopy, Appl Opt, 49(2010)4362–4366.
  66. Wackerbarth H, Gundrum L, Salb C, Christou K, Viöl W, Challenge of false alarms in nitroaromatic explosive detection—a detection device based on surface-enhanced Raman spectroscopy, Appl Opt, 49(2010)4367–4371.
  67. Hatab N A, Eres G, Hatzinger P B, Gu B, Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy, J Raman Spectros, 41(2010)1131–1136.
  68. Yang L, Ma L, Chen G, Liu J, Z-Q T, Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate, Chemistry – a Eur J, 16(2010)12683–12693.
  69. Tamane S, Topal C O, Kalkan A K, IEEE Int Conf Nanotechnol, (2011)301–306.
  70. Xu Z, Hao J, Braida W, Strickland D, Li F, Meng X, Surface-enhanced Raman scattering spectroscopy of explosive 2, 4-dinitroanisole using modified silver nanoparticles, Langmuir, 27(2011)13773–13779.
  71. Oo M K K, Chang C-F, Sun Y, Fan X, Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates, Analyst, 136(2011)2811–2817.
  72. Liu X C, Zhao L, Shen H, Xu H, Lu L, Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives, Talanta, 83(2011)1023–1029.
  73. Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H, SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms, J Raman Spectrosc, 42(2011)1728–1735.
  74. Zhou H, Zhang Z, Jiang C, Guan G, Zhang K, Mei Q, Liu R, Wang S, Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array, Anal Chem, 83(2011)6913–6917.
  75. Sajanlal P R, Pradeep T, Functional hybrid nickel nanostructures as recyclable SERS substrates: detection of explosives and biowarfare agents, Nanoscale, 4(2012)3427–3437.
  76. Piorek B D, Lee S J, Moskovits M, Meinhart C D, Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives, Anal Chem, 84(2012)9700–9705.
  77. Fierro-Mercado P M, Hernandez-Rivera S P, Highly sensitive filter paper substrate for SERS trace explosives detection, Int J Spectrosc, (2012)2012; doi:10.1155/2012/716527.
  78. Chou A, Jaatinen E, Buividas R, Seniutinas G, Juodkazis S, Izake E L, Fredericks P M, SERS substrate for detection of explosives, Nanoscale, 4(2012)7419–7424.
  79. Liu M, Chen W, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy, Biosens Bioelectron, 46(2013)68–73.
  80. Herrera G M, Padilla A C, Hernandez-Rivera S P, Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation, Nanomaterials, 3(2013)158–172.
  81. Nuntawong N, Eiamchai P, Limwichean S, Wong-ek B, Horprathum M, Patthanasettakul V, Leelapojanaporn A, Nakngoenthong S, Chindaudom P, Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy, Forensic Sci Int, 233(2013)174–178.
  82. Lopez-Lopez M, Garcia-Ruiz C, Infrared and Raman spectroscopy techniques applied to identification of explosives, Trend Anal Chem, 54(2014)36–44.
  83. Ma R-M, Ota S, Li Y, Yang S, Zhang X, Explosives detection in a lasing plasmon nanocavity, Nat Nanotechnol, 9(2014)600–604.
  84. Botti S, Cantarini L, Almaviva S, Puiu A, Rufoloni A, Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules, Chem Phys Lett, 592(2014)277–281.
  85. Chen T F, Lu S H, Wang A J, Zheng D, Wu Z L, Wang Y S, Detection of explosives by surface enhanced Raman scattering using substrate with a monolayer of ordered Au nanoparticles, Appl Surf Sci, 317(2014)940–945.
  86. Hamad S, Podagatlapalli G K, Mohiddon M A, Soma V R, Cost effective nanostructured copper substrates prepared with ultrafast laser pulses for explosives detection using surface enhanced Raman scattering, Appl Phys Lett, 104(2014)263104;
  87. Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M, Fabrication of SERS swab for direct detection of trace explosives in fingerprints, ACS Appl Mater Inter, 6(2014)21931–21937.
  88. Kong X, Xi Y, Le Duff P, Chong X, Li E, Ren F, Rorrer G L, Wang A X, , Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica, Biosens Bioelectron, 88(2017)63–70.
  89. Liyanage T, Rael A, Shaffer S, Zaidi S, Goodpaster J V, Sardar R, Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints, Analyst, 143(2018)2012–2022.
  90. Gillibert R, Huang J Q, Zhang Y, Fu W L, de la Chapelle M L. Explosive detection by surface enhanced Raman scattering, TrAC Trend Anal Chem, 105(2018)166–172.
  91. Liszewska M, Bartosewicz B, Budner B, Nasiłowska B, Szala M, Weyher J L, Dzięcielewski I, Mierczyk Z, Jankiewicz B J, Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems, Vib Spectrosc, 100(2019)79–85.
  92. Byram C, Moram S S, Soma V R, SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures, Analyst, 144(2019)2327–2336.
  93. Vendamani V S, Rao S N, Pathak A P, Soma V R, Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate, RSC Adv, 10(2020)44747–44755.
  94. Heleg-Shabtai V, Zaltsman A, Sharon M, Sharabi H, Nir I, Marder D, Cohen G, Ron I, Pevzner A, Explosive vapour/particles detection using SERS substrates and a hand-held Raman detector, RSC Adv, 11(2021)26029-26036.
  95. Cyrankiewicz M, Wybranowski T, Kruszewski S, Study of SERS efficiency of metallic colloidal systems, J Phys: Conf Ser, 79(2007)012013; doi. org/10.1088/1742-6596/79/1/012013.
  96. Lee P C, Meisel D, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J Phys Chem, 86(1982)3391–3395.
  97. White P C, Hjortkjaer J H, International Patent Application, PCT WO 2009/081138 A1, (2009).