Asian Journal of Physics Vol 30, No 12 (2021) 1689-1696

Theoretical analysis of optogenetic excitation of ON and OFF retinal ganglion neurons

Gur Pyari, Himanshu Bansal and Sukhdev Roy
Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra-282 005, India
Dedicated to Prof D V G L N Rao


Retinal ganglion neurons (RGNs) have a large range of variation in their ionic channel properties and morphologies. In optogenetic retinal prostheses, the variation becomes crucial as the irradiance thresholds and pulse widths to evoke desired firing patterns are highly sensitive to the biophysical properties of targeted neurons. In the present study, a theoretical analysis of optogenetic excitation of ON and OFF RGNs has been presented by formulating morphologically- and biophysically-accurate models of opsin expressing neurons. The study also compares the potential of experimentally studied opsins namely ChR2 and ChrimsonR with a recently discovered opsin named ChRmine, not studied as yet for retinal prostheses. The study reveals that ChRmine is able to evoke spiking upto 112 Hz in OFF RGNs on axonal illumination at 3.6 × 1014 photons mm–2 s–1 i.e., an order of magnitude lower than standard safety threshold at 590 nm of retina. In comparison, to target other parts, both ON and OFF RGNs respond faster on axonal stimulation. Minimum irradiance threshold to evoke high-fidelity spiking under pulsed illumination is lowest on somatic stimulation in ON-RGCs, while it is almost similar on both somatic and axonal stimulation in OFF-RGNs. The study provides a useful insight on how different kinds of RGCs and their different parts respond to optical stimulations. The more detailed biophysical model of opsin-expressing RGNs would be useful in accurately predicting the response of real biological neurons to optogenetic stimulation.© Anita Publications. All rights reserved.
Keywords: Optogenetics, Channelrhodopsin, Retinal prostheses, ChRmine.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Beyeler M, Rokem A, Boynton G M, Fine I, Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies, J Neural Eng, 14(2017)051003; doi. 10.1088/1741-2552/aa795e.
  2. Baker C K, Flannery J G, Innovative optogenetic strategies for vision restoration, Front Cell Neurosci, 12(2018) 316; doi.org/10.3389/fncel.2018.00316.
  3. Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T, Emerging approaches for restoration of hearing and vision, Physiol Rev, 100(2020)1467–525.
  4. Margalit E, Maia M, Weiland J D, Greenberg R J, Fujii G Y, Torres G, Piyathaisere D V, O’Hearn T M, Liu W, Lazzi G, Dagnelie G, Retinal prosthesis for the blind, Surv Ophthalmol, 47(2002)335–356.
  5. Jacobson S G, Sumaroka A, Luo X, Cideciyan A V, Retinal optogenetic therapies: clinical criteria for candidacy, Clin Genet, 84(2013)175–182.
  6. Hart W L, Richardson R T, Kameneva T, Thompson A C, Wise A K, Fallon J B, Stoddart P R, Needham K, Combined optogenetic and electrical stimulation of auditory neurons increases effective stimulation frequency- an in vitro study, J Neural Eng, 17(2020)016069; 10.1088/1741-2552/ab6a68.
  7. Boyden E S, Zhang F, Bamberg E, Nagel G, Deisseroth K, Millisecond-timescale, genetically targeted optical control of neural activity, Nat Neurosci, 8(2005)1263–1268.
  8. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, PNAS USA, 100(2003)13940–13945.
  9. Deisseroth K, Optogenetics: 10 years of microbial opsins in neuroscience, Nat Neurosci,18(2015)1213–1225.
  10. Guru A, Post R J, Ho Y Y, Warden M R, Making sense of optogenetics, Int J Neuropsychopharmacol, 18(2015) pyv079; doi.org/10.1093/ijnp/pyv079.
  11. Bi A, Cui J, Ma Y P, Olshevskaya E, Pu M, Dizhoor A M, Pan Z-H, Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Neuron, 50(2006)23–33.
  12. Wu J, Seregard S, Algvere P V, Photochemical damage of the retina, Surv Ophthalmol, 51(2006)461–481.
  13. Sengupta A, Chaffiol A, Mace´ E, Caplette R, Desrosiers M, Lampiˇc M, Forster V, Marre O, Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina EMBO, Mol Med, 8(2016)1248–1264.
  14. Soltan A, Barrett J M, Maaskant P, Armstrong N, Al-Atabany W, Chaudet L, Neil M, Sernagor E, Degenaar P, A head mounted device stimulator for optogenetic retinal prosthesis, J Neural Eng, 15(2018)065002; doi.10.1088/1741-2552/aadd55.
  15. Degenaar P, Grossman N, Memon M A, Burrone J, Dawson M, Drakakis E, Neil M, Nikolic K, Optobionic vision-a new genetically enhanced light on retinal prosthesis, J Neural Eng, 6(2009)035007; doi.10.1088/1741-2560/6/3/035007.
  16. Klapoetke N C, Murata Y, Kim S S, Pulver S R, Birdsey-Benson A, Cho Y K, Morimoto T K, Chuong A S, Carpenter E J, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow B Y, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong G Ka-Shu, Boyden E S, Independent optical excitation of distinct neural populations, Nat Methods, 11(2014)338–346.
  17. Gauvain G, Akolkar H, Chaffiol A, Arcizet F, Khoei M A, Desrosiers M, Jaillard C, Caplette R, Marre O, Bertin S, Fovet C M, Demilly J, Forster V, Brazhnikova E, Hantraye P, Pouget P, Douar A, Pruneau D, Chavas J, Sahel J-A, Dalkara D, Duebel J, Benosman R, Picaud S, Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates, Commun Biol, 4(2021)125; doi.org/10.1038/s42003-020-01594-w.
  18. Sahel J A, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel J N, Degli Esposti S, Delaux A, de Saint A J B, de Montleau C, Gutman E, Partial recovery of visual function in a blind patient after optogenetic therapy, Nat Med, 27(2021)1223–1229.
  19. Marshel J H, Kim Y S, Machado T A, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane J C, McKnight D J, Yoshizawa S, Kato H E, Ganguli S, Deisseroth K, Cortical layer–specific critical dynamics triggering perception, Science, 365(2019)558; doi. 10.1126/science.aaw5202.
  20. Guo T, Yang C Y, Tsai D, Muralidharan M, Suaning G J, Morley J W, Dokos S, Lovell N H, Closed-loop efficient searching of optimal electrical stimulation parameters for preferential excitation of retinal ganglion cells, Front Neurosci, 12(2018)168; doi.org/10.3389/fnins.2018.00168.
  21. Fohlmeister J F, Miller R F, Impulse encoding mechanisms of ganglion cells in the tiger salamander retina, J Neurophysiol, 78(1997)1935–1947.
  22. Bansal H, Gupta N, Roy S, Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses, J Neural Eng, 18(2021)0460b8; 10.1088/1741-2552/ac1175.
  23. Engelhard C, Chizhov I, Siebert F, Engelhard M, Microbial halorhodopsins: light-driven chloride pumps, Chem Rev, 118(2018)10629–10645.
  24. Roy S, Kikukawa T, Sharma P, Kamo N, All-optical switching in pharaonis phoborhodopsin protein molecules, IEEE Trans Nanobiosci, 5(2006)178–187.
  25. Roy S, Singh C P, Reddy K P, Generalized model for all-optical light modulation in bacteriorhodopsin, J Appl Phys, 90(2001)3679–3688.
  26. Sharma P, Roy S, All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates, J Appl Phys, 96(2004)1687–1695.
  27. Saran S, Gupta N, Roy S, Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons, Neurophotonics, 5(2018)025009; doi.org/10.1117/1.NPh.5.2.025009.
  28. Evans B D, Jarvis S, Schultz S R, Nikolic K, PyRhO: a multiscale optogenetics simulation platform, Front Neuroinform, 10(2016)8; doi.org/10.3389/fninf.2016.00008.
  29. Bansal H, Gupta N, Roy S, Comparison of low-power, high frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons, Biomed Phys Eng Exp’, 6(2019)045011; doi.10.1088/2057-1976/ab90a1.
  30. Bansal H, Gupta N, Roy S, Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution, Neurosci, 449(2020)165–188.
  31. Gupta N, Bansal H, Roy S, Theoretical optimization of high frequency optogenetic spiking of red-shifted very fast-Chrimson expressing neurons, Neurophoton, 6(2019)025002; doi.org/10.1117/1.NPh.6.2.025002.
  32. Nikolic K, Grossman N, Grubb M S, Burrone J, Toumazou C, Degenaar P, Photocycles of channelrhodopsin-2, Photochem Photobiol, 85(2009)400-411.
  33. Sabatier Q, Joffrois C, Gauvain G, Chavas J, Pruneau D, Picaud S, Benosman R, Modeling the electro-chemical properties of microbial opsin ChrimsonR for application to optogenetics-based vision restoration, bioRXiv (2018) ; doi.10.1101/417899.
  34. Mager T, de la Morena D L, Senn V, Schlotte J, Errico A D, Feldbauer K, Wrobel C, Jung S, Bodensiek K, Rankovic V, Browne L, Huet A, Errico A D, Feldbauer K, Huet A, Jüttner J, Wood P G, Letzkus J J, Moser T, Bamberg E, High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics, Nat Commun, 9(2018)1750;org/10.1038/s41467-018-04146-3.