Asian Journal of Physics Vol. 33, Nos 1 & 2 (2024) 17-26

Tip-enhanced Raman spectroscopy of single semiconducting nanostructures

Avinash Patsha,1,2*, A K Sivadasan1,3, Santanu Parida1,4, Raktima Basu,1,5,6 and Sandip Dhara1,6*
1Surface and Sensors Studies Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102, India
2Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, Israel.
3Thin Films and Plasmonics Group, Centre for Materials for Electronics Technology (C-MET), Thrissur-680 581, (Kerala), India
4Department of Physics, Govt. Women’s College, Baripada-757 001, (Orissa), India
5Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata- 700 064, India
6A CI of Homi Bhabha National Institute, Mumbai- 400 094, India


Tip-enhanced Raman spectroscopic (TERS) technique is reviewed for studying single semiconductor nanostructures along with different possible modes of operation in various optical arrangements. The role of scattering efficiency in the nanospectroscopic localized study using TERS in the near-field was explored for different inorganic covalent and partially ionic bonded Si, GaN and AlN single nanowires. A localized study was also performed for phase identification and dopant analysis in a single GaN nanowire. In the polarized TERS measurement, metal-insulator phase transition, along with the observation of spin-wave in a single VO2 nanorod, was also explored. The size-dependent phonon population of single Si nanowires is also examined using TERS in the context of carrier depletion in these nanostructures. © Anita Publications. All rights reserved. doi:10.54955/AJP.33.1-2.2024.17-26.
Keywords: Tip-enhanced Raman Spectroscopy, Si Nanowires, VO2, GaN, Near-field spectroscopy, TERS, Semiconducting
nanostructures.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Dhara S, Jariwala D, Das S, Nanoscopy and Nanospectroscopy, (CRC Press, Boca Raton, Florida, USA), 2023.
  2. Bhowmik D, Chandrabhas N, Far-field spectroscopy and surface enhanced Raman spectroscopy (SERS) in  Nanoscopy and Nanospectroscopy, eds. Dhara S, Jariwala D, Das S, (CRC Press, Boca Raton, Florida, USA), 2023, p 97.
  3. Krayev A, Near-Field Nano-spectroscopy and tip enhanced Raman spectroscopy (TERS) in Nanoscopy and Nanospectroscopy, eds, Dhara S, Jariwala D, Das S, (CRC Press, Boca Raton, Florida, USA), 2023, p.131.
  4. Synge E H, A suggested method for extending microscopic resolution into the ultra-microscopic region, The London, Edinburgh, and Dublin Phil Magazine and Journal of Science, 6(1928)356–362.
  5. Stöckle R M, Suh Y D, Deckert V, Zenobi R, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem Phys Lett, 318(2000)131–136.
  6. Anderson N, Hartschuh A, Cronin S, Novotny L, Nanoscale vibrational analysis of single-walled carbon nanotubes, J Am Chem Soc, 127(2005)2533–2537.
  7. Stadler J, Schmid T, Zenobi R, Nanoscale chemical imaging of single-layer graphene, ACS Nano, 5(2011)8442–8448.
  8. Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman Y, Scheidt K A, Jensen L, Schatz G C, van Duyne R P, J Phys Chem C, 116 (2012)478; doi.org/10.1021/jp209982h.
  9. Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature, 498(2013)82–86.
  10. Hayazawa N, Inouye Y, Sekkat Z, Kawata S, Metallized tip amplification of near-field Raman scattering, Opt Commun, 183(2000)333–336.
  11. Kumar N, Rae A, Roy D, Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts, Appl Phys Lett, 104(2014)123106; doi.org/10.1063/1.4869184.
  12. Kawata S, Near-field optics and surface plasmon polariton, (Springer-Verlag:Berlin Heidelberg), 2001.
  13. Maier S A, Atwater H A, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J Appl Phys, 98(2005)011101; doi.org/10.1063/1.1951057.
  14. Benson O, Assembly of hybrid photonic architectures from nanophotonic constituents, Nature, 480(2011)193–199.
  15. Pozzi E A, Sonntag M D, Jiang N, Klingsporn J M, Hersam M C, van Duyne R P, Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale, ACS Nano, 7(2013)885–888.
  16. Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W, Tip-enhanced Raman Spectroscopy–Its status, challenges and future directions, Chem Phys Lett, 472(2009)1–13.
  17. Poborchii V, Tada T, Kanayama T, Geshev P, Optimization of tip material and shape for near‐UV TERS in Si structures, J Raman Spectrosc, 40(2009)1377–1385.
  18. Patsha A, Dhara S, Size-dependent localized phonon population in semiconducting Si nanowires, Nano Lett, 18(2018)7181–7187.
  19. Marquestaut N, Talaga D, Servant L, Yang P, Pauzauskie P, Lagugne-Labarthet F, Imaging of single GaN nanowires by tip‐enhanced Raman spectroscopy, J Raman Spectrosc, 40(2009)1441–1445.
  20. Poliani E, Patsha A, Dhara S, Wagner M R, Reparaz J S, Mandl M, Strassburg M, Kong X, Trampert A, Sotomayor Torres C M, Hoffmann A, Maultzsch J, Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering, Nano Lett, 13(2013)3205–3212.
  21. Parida S, Patsha A, Madapu K K,  Dhara S, J Appl Phys,127 (2020)173103; doi.org/10.1063/1.5128999.
  22. Patsha A, Dhara S, Tyagi A K, Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit, Appl Phys Lett, 107(2015)123108; doi.org/10.1063/1.4931730.
  23. Sivadasan A K, Patsha A, Maity A, Chini T K, Dhara S, Effect of Scattering Efficiency in the Tip-Enhanced Raman Spectroscopic Imaging of Nanostructures in the Sub-diffraction Limit, J Phys Chem C, 121(2017)26967–26975.
  24. Basu R, Patsha A, Chandra S,  Amirthapandian S, Raghavendra K G,  Dasgupta A, Dhara S, Polarized Tip-Enhanced Raman Spectroscopy in Understanding Metal-to-Insulator and Structural Phase Transition in VO2, J Phys Chem C, 123(2019)11189–11196.
  25. Basu R, Srihari V, Sardar M, Srivastava S, Bera S, Dhara S, Probing phase transition in VO2 with the novel observation of low-frequency collective spin excitation, Sci Rep, 10(2020)1977; doi.org/10.1038/s41598-020-58813-x.
  26. Basu R, Sardar M, Dhara S, Origin of phase transition in VO2, AIP Conf Proc, 1942(2018)030003; doi.org/10.1063/1.5028584.