ASIAN JOURNAL OF PHYSICS

An International Peer Reviewed Research Journal
Frequency : Monthly,
ISSN : 0971 – 3093
Editor-In-Chief (Hon.) :
Dr. V.K. Rastogi
e-mail:[email protected]
[email protected]

AJP ISSN : 0971 – 3093
Vol 26, No 11-12, November-December, 2017

Asian
Journal of Physics

Asian Journal of Physics

Vol. 26 No 11 & 12 (2017) 325-335

The anti-HIV Nucleoside analogue d4T (Stavudine): Solid state simulation by

DFT methods of the FT-IR and FT-Raman spectra

 

M Alcolea Palafoxa,b, D Kattana,b, and A Nils Kristiana

aNofima AS – the Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430 Ås, Norway

bDepartamento de Química-Física I, Facultad de Ciencias Químicas,Universidad Complutense, Madrid-28040, Spain

The theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit or 3′-deoxy-2,3´-didehydro thymidine) Nucleoside Analogue was carried out. The calculated spectra were scaled by using the linear scaling equation procedure (LSE). The d4T monomer and dimers were simulated by using DFT methods. The IR spectrum was recorded in the solid state in the region 400-4000 cm-1 and the Raman spectrum was recorded in the region 0-3500 cm-1. The vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled values of the different dimer forms. Thus, through this comparison, we were able to confirm that the solid state sample corresponds to dimer V. © Anita Publications. All rights reserved.

Keywords: d4T, Stavudine, anti-HIV, IR spectrum, Raman spectrum, DFT

References
1.  Taisheng L, Fuping G, Yijia L, Chengda Z, Yang H, Wei L, Yun H, Hongzhou L, Jing X, Aiqiong H, Yanling L, Xiaoping T, Hui W, Tong Z, Guiju G,  Junkang
  L, Xiaoying Z, Xinhua W, Yongtao S, Jinsong B, Ling L,  Huanling W, Chinese Med J, 127(2014)59-65.
2.  Li T, Dai Y, Kuang J, Jiang J, Han Y, Qiu Z, Jing Xie, Zuo L, Li Y, PLoSONE 3, e3918 (2008); doi.org/10.1371
3.  van Oosterhout J J, Mallewa J, Kaunda S, Chagoma N, Njalale Y, E. Kampira E, Mukaka M, Heyderman R S, PLoSONE 7, e42029(2012); doi.org/10.1371
 /journal.pone.0042029
4.  Phanuphak N, Ananworanich J, Teeratakulpisarn N, Jadwattanakul T, Kerr S J, Chomchey N, Hongchookiat P, Mathajittiphun P, Pinyakorn S, Rungrojrat P,
Praihirunyakit P,  Gerschenson M, Phanuphak P,  Valcour V, Kim J H, Cecilia S,  Antivir Ther, 17(2012)1521-1531.
5.  Palafox M A, Iza N, J Molec Struct, 1028(2012)181-195.
6.  Palafox M A, Talaya J, J Phys Chem B, 114(2010)15199-15211.
7.  Zhao Y, Truhlar D G, J Chem Phys, 125(2006)194101; doi:10.1063/1.2370993.
8.  Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V,  Mennucci B, Petersson G A, Nakatsuji H, Caricato
M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, , Vreven T,  Montgomery J A(Jr), Peralta J E, Ogliaro F, Bearpark M, Heyd J J,  Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M,  Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O,  Austin A J, Cammi R, Pomelli C,  Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09, Revision D.01, Inc., Wallingford CT, 2009.
9.     Palafox M A, Rastogi R, Anupama, Alam M J, Bhat D, Rastogi V K, Asian J Phys, 25(2016)189-219.
10.   El-Sayed A A, Molina A M, Álvarez-Ros M C, Palafox M A, J Biomol.Struct & Dyn, 33(2015)723-748.
11.   Palafox M A, Chem Informatics, 1(2015)1-13.
12.   Palafox M A, Posada-Moreno P, Villarino-Marín A L, Martinez-Rincon C, Ortuño-Soriano I, Zaragoza-García I, J Computer-Aided Molec Design,
 25(2011)145-161.
13.   Palafox M A, Iza N, Struct Chem, 24(2013)967-980.
14.   Yurenko Y P, Zhurakivsky R O, Ghomi M, Samijlenko S P, Hovorun D M, J Phys Chem B, 111(2007)6263-6271.
15.   Palafox M A, Rastogi V K, Spectrochim Acta A, 58 (2002)411-440.
16.   Choi Y, George C, Comin M J (Jr). Barchi J J, Kim H S, Jacobson K A, Balzarini J, Mitsuya H, Boyer P L, Hughes S H, MarquezV E, J Med Chem,
46(2003)3292-3299.

17.   (a) Palafox M A, Int  J Quantum Chem, 77(2000)661-684.
        (b) Palafox M A, Rastogi V K, in Perspectives in Modern Optics and Optical Instrumentation,  (eds), Jobi J, Sharma A, Rastogi  V K, (Anita Publications,
FF-43, Mangal Bazar, Laxminagar, Delhi), 2002, pp 91-98

        (c) Palafox M A, Nunez J L, Gill M, Rastogi V K, in Perspectives in Engg Optics,, (eds) Singh K, Rastogi V K, (Anita Publications, FF-43, Mangal Bazar, Laxminagar, Delhi), 2003, pp 356-391.

         (d) Palafox M A, Nunez J L, Gill M, Rastogi V K, Mittal L, Sharma R, Int J Quantum Chem, 103(2005)394-421.
         (e) Palafox M A, Asian Chem Letts, 7(1998)785-816.
18.    Palafox M A, Iza N, Gil M, J Mol Struct (Theochem), 585(2002)69-92.
19.    Rastogi V K, Singhal S, Palafox M A, Rao G R, Ind J Phys, 84 (2010)151-165.
20.    Carpenter J E, Weinhold F, J Molec Struct, (Theochem) 169(1988)41-62.
21.    Alvarez-Ros M C, Palafox M A, Pharmaceuticals, 7(2014)695-722.
22.    Palafox M A, Struct.Chem, 25(2014)53-69.
23.    Palafox M A, J Biomol.Struct & Dyn, 32(2014)831-851.
24.    Alvarez-Ros M C, Palafox M A, J Molec Struct, 1047(2013)358-371.
25.    Gauss View 5.1 Gaussian Inc., Wallingford CT, (2009).
26.    Saenger W, Principles of Nucleic Acid Structure, (Springer Verlag Publishers: New York),1984, pp 556.
27.    Mirmehrabi M, Rohani S, Jennings M C, Acta Cryst, C61(2005)o695-o698; doi.org/10.1107/S01082701050345918   
28.    Gurskaya G V, Tsapkina E N, Abstracts of the twelfth European Crystallographic Meeting, Moscow, vol. 2, p 380(1989).
29.    Tsapkina E N, Dissertation for Doctorate I Chemical Sciences, Institute of Molecular Biology, Moscow, (1989).
30.    Harte W E (Jr), Starret J E (Jr), Martin J C, Mansuri M M, Biochem Biophys Res Comm, 175(1991)298-304.
31.    Gurskaya G V, Bochkarev A V,  Zhdanov A S, Dyatkina N B, Kraevskii A A, Mol Biol., 25(2),401 (1991).
32.    Rastogi V K, Singh C, Jain V, Palafox M A, J Raman Spectrosc, 31(2000)1005-1012.
33.    C J Cramer, Essentials of Comput. Chem.;( John Wiley & Sons: Chinchester, England), 265 (2002).
34.    Palafox M A, Iza N, Gil M, J Molec Struct (Theochem), 585(2002)69-92.
35.    Colarusso P, Zhang K, Guo B, Bernath P F, Chem Phys Lett, 269(1997)39-48.

 

Asian Journal of Physics

Vol. 26 No 11 & 12 (2017) 337-351

2-Thiouracil: Influence of water in the first hydration shell and Effect of the
Sulfur Atom on the Base Pairs 2-Thiouridine-Adenosine

 

M Alcolea Palafox1,V K Rastogi2,3, S P Singh4 and S K Rathor3

1Departamento de Química-Fisica1. Facultad de Ciencias Químicas. Universidad Complutense. Madrid- 28040. Spain.

2R D Foundation Group of Institutions, NH-58, Kadrabad, Modinagar (Ghaziabad), India

3Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad-201 002, India

4Department of Physics, Dr B R Ambedkar Govt Degree College, Mainpuri, India

The crystal unit cell of 2-thiouracil (2TU) in the solid state was simulated through a tetramer form using DFT methods. The first and second hydration shells were simulated by explicit number of water molecules surrounding 2TU up to 30. The calculated spectra were compared to the experimental ones. A linear scaling procedure (LSE) was used for this task. The effect of the hydration on different parameters of the molecular structure of 2TU was analyzed. The total atomic charges were discussed. The effect of the sulfur atom on the Watson-Crick (WC) and reverse WC base pair uridine-adenosine was estimated, and the CP corrected interaction energies were calculated. A microhelix RNA:DNA was simulated with two nucleotides base pairs © Anita Publications. All rights reserved.

Keywords: 2-thiouracil, interaction energies, DFT, hydration, scaling, 2-thiouridine, uridine.

Total Refs : 37

 

Asian Journal of Physics Vol. 26 No 11 & 12 (2017) 353-357

Electro-optic investigations on ferroelectric and silica nanoparticles doped ferroelectric liquid crystal mixtures 
Rajbir Singh
1Department of Physics, Meerut College, Meerut-250 001, India


Dispersed liquid crystal composites have attracted significant interest among scientific community due to their practical and technological applications in various fields including displays. In this work, a ferroelectric liquid crystal and silica nanoparticles doped ferroelectric liquid crystal composites are studied in SmC* phase. The effect of doping and temperature on the spontaneous polarization, switching time and viscosity of FLC are investigated in thin planar sample cell of thickness 9 µm. The doping of silica decreases the polarization and increases the switching time. The viscosity of the sample also changes after dispersion of silica nanoparticles. © Anita Publications. All rights reserved.

Keywords: Ferroelectric liquid crystal, Silica nanoparticle, Polarization, Switching time.

References

  1. Bellini T, Clark N A, Muzny C D, Phys Rev Lett, 69(1992)788; doi.org/10.1103/PhysRevLett.69.788.
  2. Bellini T, Clark N A, Schaefer D W, Phys Rev Lett, 74, 2740, (1995)..
  3. Malik P, Chaudhary A, Raina K K, Asian J Chem, 21(2009)S095–S098.
  4. Kreuzer M, Tschudi T, Eidenschink R, Mol Cryst Liq Cryst, 223(1992)219–227.
  5. Kreuzer M, Tschudi T, Jeu W H D, Eidenschink R, Appl Phys Lett, 62(1993)1712; https://doi.org/10.1063/1.109582.
  6. Rozanski S A, Thoen J, J Non-Cryst Sol, 33-36(2005)2802-2808.
  7. Kutnjak Z, Kralj S, Zumer S, Phys Rev E, 66, 041702 (2002); doi.org/10.1103/PhysRevE.66.041702.
  8. Qi H, Hegmann T, J Mater Chem, 18(2008)3288–3294.
  9. Reznikov Y, Buchnev O, Tereshchenko O, Reshetnyak V, Glushchenko A, Appl Phys Lett, 82(2003)1917; doi.org/10.1063/1.1560871. 
  10. Reshetnyak V Y, Mol Cryst Liq Cryst, 421(2004)219–224,
  11. Kaur S, Singh S P, Birader A M, Choudhary A, Sreenivas K, Appl Phys Lett, 91, 0231201 (2007); doi.org/10.1063/1.2756136.
  12. Liang H H, Xiao Y Z, Hsh F J, Wu C C, Lee J Y, Liq Cryst, 37(2010)255–261.
  13. Jakli A, Almsay L, Borbely S, Rosta L, Eur Phys J, 10(1999)509–513.
  14. Glushchenko A V, Kresse H, Reznikov Y, Yaroshchuk O, Proc SPIE, 2795, 38 (1996); doi.org/10.1117/12.239228.
  15. Prasad S K, Sandya K L, Nair G G, Hiremath U S, Yelmaggad C V, Sampth S, Liq Cryst, 33(2006)1121–1125.
  16. Mertelj A, Jakli A, Copic M, Mol Cryst Liq Cryst, 331(1999)81–87.
  17. Kingston Chemical, UK.
  18. Sigma Aldrich, INDIA.
  19. Neeraj, K. K. Raina, Phase Transitions, 83(2010)615–626.
  20. Malik P, Raina K K, Bubnov A, Prakash C, Phase Transitions, 79 (2006)889–898
Asian Journal of Physics Vol. 26, Nos 11 & 12 (2017) 359-364

Effect of the presence of 5- Guanidino-4- nitroimidazole on B- DNA structure
Neena Srivastavaa, A Dwivedib, P K Tripathic and K Singhd
aDepartment of Chemistry, Mahila Vidyalaya Degree College, Aminabad, Lucknow-226 018, India
bChemistry Section, Directorate of Geology and Mining U.P., Lucknow-226 001, India
cFood Safety and Drug Administration, Collectorate Campus, Bahjoi (Sambhal)- 244 410, India
dDepartment of Molecular Microbiology and Immunology, Bond Life Science Centre,
University of Missouri, Columbia, MO 65211, USA


5-Guanidino-4-nitroimidazole (GN), derived from the oxidation of guanine by reactive oxygen and nitrogen species, contains an unusual flexible ring-opened structure. In this molecule, the nitro and guanidino groups possess multiple hydrogen bonding capabilities. In vitro primer extension experiments with bacterial and mammalian polymerases have shown that it is incorporated against C as well as A and G, depending on the polymerase. To elucidate structural and thermodynamic properties of the mutagenic GN lesion, we have investigated the structure of the modified base itself and the GN-containing nucleoside with semi-empirical quantum mechanical calculations at PM3 level and have used molecular modelling techniques (SYBYL) to determine its status in B-DNA duplexes, with four partner bases opposite the GN. Our results show that GN adopts a planar structure at the damaged base level. However, in the nucleoside and in DNA duplexes, steric hinderance between the guanidino group and its linked sugar causes GN to be nonplanar. The GN lesion can adopt both syn and anti conformations on the DNA duplex level, with the guanidino group positioned in the DNA major and minor grooves, respectively. On the basis of hydrogen bonding and stacking interactions, groove dimensions, and bending, we noted that the least distorted GN-modified duplex contains partner C. However, hydrogen bonding interactions between GN and partner G or A are also found, which is similar to the geometry as that observed for mismatches.© Anita Publications. All rights reserved.

Keywords: Ferroelectric liquid crystal, Silica nanoparticle, Polarization, Switching time.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K, Mitochondrial generation of reactive oxygen species and its role in aerobic life, Curr Med Chem,10(2003)2495-2505.
  2. Le Bras M, Clement M V, Pervaiz S, Brenner C, Reactive oxygen species and the mitochondrial signaling pathway of cell death, Histol Histopathol, 20(2005)205-219.
  3. Cadet J, Berger M, Douki T, Ravanat J L, Oxidative damage to DNA: formation, measurement, and biological significance, Rev Physiol Biochem Pharmacol, 131(1997)1-87.
  4. Dizdaroglu M, Chemical determination of free radical-induced damage to DNA, Free Radical Biol Med, 10(1991) 225-242.
  5. Epe B, DNA Damage Profiles Induced by Oxidizing Agents, Rev Physiol Biochem Pharmacol, 127(1995)223-249.
  6. Lindahl T, Instability and decay of the primary structure of DNA, Nature, 362(1993)709-715.
  7. Greenberg M M, In vitro and in vivo effects of oxidative damage to deoxyguanosine, Biochem Soc Trans, 32(2004) 46-50.
  8. Hussain S P, Hofseth L J, Harris C C, Radical causes of cancer, Nat Rev Cancer, 3(2003)276-285.
  9. Klaunig J E, Kamendulis L M, The role of oxidative stress in carcinogenesis, Annu Rev Pharmacol Toxicol, 44(2004)239-267.
  10. Olinski R, Gackowski D, Foksinski M, Rozalski R, Roszkowski K, Jaruga P, Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome, Free Radical Biol Med, 33(2002)192-200.
  11. Weinberg R A, How cancer arises, Sci Am, 275(1996)62-70.
  12. Finkel T, Holbrook N J, Oxidants, oxidative stress and the biology of ageing, Nature, 408(2000)239-247.
  13. Mandavilli B S, Santos J H, Van Houten B, Mitochondrial DNA repair and aging, Mutat Res, 509(2002)127-151.
  14. Sastre J, Pallardo F V, Vina J, The role of mitochondrial oxidative stress in aging, Free Radical Biol Med, 35(2003)1-8.
  15. Hamilton M L, Van Remmen H, Drake J A, Yang H, Guo Z M, Kewitt K, Walter C A, Richardson A, Does oxidative damage to DNA increase with age?, Proc Natl Acad Sci (USA), 98(2001)10469-10474.
  16. Osterod M, Hollenbach S, Hengstler J G, Barnes D E, Lindahl T, Epe B, Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice, Carcinogenesis, 22(2001)1459-1463.
  17. Cooke M S, Evans M D, Dizdaroglu M, Lunec J, Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J, 17(2003)1195-1214.
  18. Neeley W L, Delaney J C, Henderson P T, Essigmann J M, In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole, J Biol Chem, 279(2004)43568-43573.
  19. Gu F, Stillwell W G, Wishnok J S, Shallop A J, Jones R A, Tannenbaum S R, Peroxynitrite-induced reactions of synthetic oligo 2′-deoxynucleotides and DNA containing guanine: formation and stability of a 5-guanidino-4-nitroimidazole lesion, Biochemistry, 41(2002)7508-7518.
  20. Stewart J J P, Optimization of parameters for semiempirical methods I. Method, J Comput Chem, 1989, 10(1989)209-220.

[Received: 29.01.2017; revised recd: 01.06.2017; accepted: 01.08.2017]