Asian Journal of Physics Vol 31, No 7 (2022) 697-712

Wavefront phase calculation of optical vector beams using phase shifting interferometry

P García-Martínez1, I Moreno2,3 and M M Sánchez-López2,4
1Department of Optics and Optometry and Vision Science, Faculty of Physics,
University of Valencia, 46100 Burjassot (Valencia), Spain
2Bioengineering Institute, Miguel Hernández University, 03202 Elche, Spain
3Department of Materials Science, Optics and Electronics Technology,
Miguel Hernández University, 03202 Elche, Spain
4Department of Applied Physics, Miguel Hernández University, 03202 Elche, Spain

Dedicated to Prof Maria J Yzuel

Recently, we proposed and built an optical system to generate arbitrary vector beams (VB) using two liquid-crystal on silicon (LCoS) spatial light modulators (SLM). Since the LCoS-SLMs devices used in the system are flicker-free, we showed the generation of VBs on-axis in a common path architecture being very efficient in terms of light energy. Here, we further demonstrate that the same system is also useful to perform common-path phase-shifting interferometry, thus being a useful tool to evaluate the phase distribution of the generated optical VB. We show different VBs obtained by superposition of two Laguerre-Gaussian (LG) beams with different orthogonal polarizations. The phase measurement is obtained by phase shifting interferometry (PSI), obtained by adding different values of a uniform phase distribution in one of the SLMs, and registering the corresponding interferograms. The continuous phase modulation provided by the LCoS-SLMs is demonstrated here to be useful to apply the synchronous detection interferometric technique for the verification of the phase distribution of different VBs. © Anita Publications. All rights reserved.

Keywords: Vector modes, Laguerre-Gaussian Beams, Vector beams, Interferometry, LCoS, Phase Shifting.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Dorn R, Quabis S, Leuchs G, Sharper focus for a radially polarized light beam, Phys Rev Lett, 91(2003)233901;
  2. Roxworthy B J, Toussaint K C(Jr), Optical trapping with π-phase cylindrical vector beams, New J Phys, 12 (2010) 073012; doi. org/10.1088/1367-2630/12/7/073012.
  3. Jin Y, Allegre O J, Perrie W, Abrams K, Ouyang J, Fearon E, Edwardson S P, Dearden G, Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material, Opt Express, 21(2013)25333–25343.
  4. Török P, Munro P R T, The use of Gauss-Laguerre vector beams in STED microscopy,Opt Express, 12(2004) 3605–3617.
  5. Forbes A, Laser Beam Propagation. Generation and Propagation of Customized Light, (CRC, Pretoria), 2014.
  6. Rosales-Guzmán C, Ndagano B, Forbes A, A review of complex vector light fields and their applications, J Opt, 12, 123001 (2018);
  7. Mushiake Y, Matsumura K, Nakajima N Y, Generation of radially polarized optical beam mode by laser oscillation, Proc IEEE, 60(1972)1107–1109.
  8. Tidwell S C, Ford D H, Kimura W D, Generating radially polarized beams interferometrically, Appl Opt, 29 (1990)2234–2239.
  9. Bomzon Z, Biener G, Kleiner V, Hasman E, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings, Opt Lett, 27(2002)285–287.
  10. Stalder M, Schadt M, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters, Opt Lett, 21(1996)1948-1950.
  11. Marrucci L, Manzo C, Paparo D, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys Rev Lett, 96(2006)163905;
  12. Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E, Polarization pattern of vector vortex beams generated by q-plates with different topological charges, Appl Opt, 51(2012)C1-C6.
  13. Rafayelyan M, Brasselet E, Laguerre–Gaussian modal q-plates, Opt Lett, 42(2017)1966–1969.
  14. Yao A M, Padgett M J, Orbital angular momentum: origins, behaviour and applications, Adv Opt Photon, 3(2011)161–204.
  15. Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pasko V, Barnett S M, Franke-Arnold S, Free-space information transfer using light beams carrying orbital angular momentum, Opt Express, 12(2004)5448–5456.
  16. Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R, Using the non-separability of vector beams to encode information for optical communication, Opt Lett, 40(2015)4887–4890.
  17. Trichili A, Rosales-Guzmán C, Dudley A, Ndagano B, Salem A B, Zghal M, Forbes A, Optical communication beyond orbital angular momentum, Sci Rep, 6(2016)27674;
  18. Vinu R V, Singh R K, Determining helicity and topological structure of coherent vortex beam from laser speckle, Appl Phys Lett, 109(2016)
  19. Han Y, Zhao G, Measuring the topological charge of optical vortices with an axicon, Opt Lett, 36(2011)2017–2019.
  20. Prabhakar S, Kumar A, Banerji J, Singh R P, Revealing the order of a vortex through its intensity record, Opt Lett, 36(2011)4398–4400.
  21. Guo C.-S, Lu L.-L, Wang H.-T, Characterizing topological charge of optical vortices by using annular aperture, Opt Lett, 34(2009)3686–3688.
  22. Dong M, Lu X Y, Zhao C, Cai Y, Yang Y, Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam,Opt Express, 26(2018)33035–33043.
  23. Schulze C, Dudley A, Flamm D, Duparré M, Forbes A, Measurement of the orbital angular momentum density of light by modal decomposition, New J Phys, 15, 073025 (2013);
  24. Moreno I, Davis J A, Badham K, Sánchez-López M M, Holland J E, Cottrell D M, Vector beam polarization state spectrum analyzer, Sci Reports, 7, 2216 (2017);
  25. Hu X, Gezhi Z, Sasaki O, Chen Z, Pu J, Topological charge measurement of vortex beams by phase-shifting digital hologram technology, Appl Opt, 57(2018)10300–10305.
  26. Huang Y, Vinu R V, Chen Z, Sarkar T, Singh R K, Pu J, Recovery and characterization of orbital angular momentum modes with ghost diffraction holography, Appl Sci, 11, 12167 (2021);
  27. García-Martínez P, Marco D, Martínez-Fuentes J L, Sánchez-López M M, Moreno I, Efficient on-axis SLM engineering of optical vector modes, Opt Lasers Eng, 125, 105859 (2020);
  28. Creath K, Phase-Shifting Holographic Interferometry, in Holographic Interferometry – Principles and Methods, (Ed) Rastogi P K, (Springer, Berlin, Heidelberg), 1994, pp 109–150.
  29. Greivenkamp J E, Bruning J H, Phase Shifting Interferometry, in Malacara D (Ed): Optical Shop Testing, (Wiley, New York), 1992, pp 501–598.
  30. Moreno I, Sánchez-López M M, Davis J A, Cottrell D M, Simple method to evaluate the pixel crosstalk caused by fringing field effect in liquid-crystal spatial light modulators, J Eur Opt Soc, – Rapid Pub, 17(2021)27;org/10.1186/s41476-021-00174-7.
  31. Martínez J L, García-Martínez P, Moreno I, Microscope system with on axis programmable Fourier transform filtering, Opt Lasers Eng, 89(2017)116–122.
  32. Martínez-Fuentes J L, Moreno I, Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays, Opt Express, 26(2018)5875–5893.
  33. Galvez E J, Vector beams in free space, Chap 3, in The Angular Momentum of Light, (Eds) Andrews D L, Bebiker M, (Cambridge University Press), 2013.
  34. de Groot P, Phase Shifting Interferometry, in Optical Measurement of Surface Topography, (Ed) Leach R, (Springer, Berlin, Heidelberg), 2011.
  35. Phase Estimation in Optical Interferometry, (Eds) Rastogi P, Hack E, (CRC Press), 2015.
  36. Messaadi A, Sánchez-López M M, García-Martínez P, Vargas A, Moreno I, Optical system for measuring the spectral retardance function in an extended range, J Eur Opt Soc – Rapid Pub, 12, 21 (2016);
  37. Litvin I A, Burger L, Forbes A, Petal–like modes in Porro prism resonators, Opt Express, 15(2007)14065–14067.