Asian Journal of Physics Vol. 33, Nos 5 & 6 (2024) 303-334

Wavefront sensing and adaptive optics: A Review

Brian Vohnsen
Optics Group, School of Physics, University College Dublin, Dublin 4, Ireland


The propagation of light in vacuum and through homogenous media is governed by diffraction as determined by the wavelength and potential obstacles. In turn, the propagation of light through inhomogeneous media experiences refractive changes that alter the optical path. These accumulated spatial phase variations (i.e. aberrations) are the result of slow spatial refractive index variations and scattering by fast spatial refractive index variations. Aberrations impose small angular deviations in the direction of propagation whereas scattering results in strong angular variations that are highly sensitive to the size of the scattering objects. Large particles scatter mostly in the forward direction while small particles scatter more uniformly. Reflection at a boundary, such as a mirror, occurs due to coherent scattering, while refraction arises from the coherent scattering of wavelets as they enter a medium with a different refractive index. Scattering by large particles as, for example, water droplets in clouds is described by Mie theory, whereas scattering by subwavelength particles as, for example, the N2 and O2 molecules of the atmosphere, results in light distributions that are highly dependent on both wavelength and polarization. Aberrations do not describe scattering but rather accumulated slow spatial phase variations that degrade the performance of optical imaging systems. Aberrations can be corrected with careful optical design or with adaptive optics for real-time compensation of aberrations. In this review contribution, the basics of wavefront sensing will be reviewed, some types of wavefront sensors will be described, the commonly used Zernike aberrations will be reviewed, and the operation of common optical active elements to correct for aberrations in real time with adaptive optics will be described. © Anita Publications. All rights reserved.
Doi: 10.54955.AJP.33.5-6.2024.309-334
Keywords: Hartmann plates, ray tracing, wavefront propagation, wavefront sensing, Zernike polynomials, Hartmann-Shack sensors, pyramid wavefront sensors, interferometers, guide stars, adaptive optics, deformable mirrors, spatial light modulators, telescopes, microscopes, ophthalmology


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Vohnsen B, A short history of optics, Phys Script, T109(2004)75–79.
  2. https://www.quantum2025.org/ (accessed March 1st 2025).
  3. Bohr N, Light and life, Nature, 131(1933)457–459.
  4. Hartmann J, Bemerkungen über den Bau und die Justirung von Spektrograpen, Zt Instrumentenkd, 20(1900)47–58.
  5. Malacara-Hernandez D, Malacara-Doblado D, What is a Hartmann test?, Appl Opt, 54(2015)2296–2301.
  6. Babcock H W, The possibility of compensating astronomical seeing, Publ Astronom Soc Pacific, 65(1953)229–236.
  7. Babcock H W, Adaptive optics revisited, Science, 249(1990)253–257.
  8. Kogelnik H, Holographic image projection through inhomogeneous media, Bell Syst Tech J, 44(1965)2451–2455.
  9. Rousset G, Fontanella J C, Kern P, Gigan P, Rigaut F, Léna P, Boyer C, Jagourel P, Gaffard J P, Merkle F, First diffraction limited astronomical images with adaptive optics, Astron and Astrophys, 230(1990) L29–L32.
  10. Lyke J E, A quarter century of adaptive optics science operations at Keck Observatory, Proc SPIE 13097(2024)1309770, Adaptive optics Systems IX; doi.org/10.1117/12.3018564.
  11. https://elt.eso.org/ (accessed March 1st 2025).
  12. Males J R, Close L M, Guyon O, Morzinski K, Puglisi A, Hinz P, Follette K B, Monnier J D, Tolls V, Rodigas T J, Weinberger A, Boss A, Kopon D, Wu Y, Esposito S, Riccardi A, Xompero M, Briguglio R, Pinna E, Direct imaging of exoplanets in the habitable zone with adaptive optics, Proc SPIE 9148(2014)914820, Adaptive Optics Systems IV; doi.org/10.1117/12.2057135.
  13. Ciurlo A, Campbell R D, Morris M R, Do T, Ghez A M, Becklin E E, Bentley R O, Chu D S, Gautam A K, Gursahani Y A, Hees A, O’Neil K K, Lu J R, Martinez G D, Naoz S, Sakai S, Schödel R, The swansong of the galactic center source X7: An extreme example of tidal evolution near the supermassive black hole, The Astrophys J, 944(2023)136; doi.org/10.3847/1538-4357/acb344.
  14. Smirnov M S, Measurement of the wave aberrations of the eye, Biofizika, 6(1961)687–703.
  15. Dreher A W, Bille J F, Weinreb R N, Active optical depth resolution improvement of the laser tomographic scanner, Opt Express, 24(1989)804–808.
  16. Liang J, Williams D R, Miller D T, Supernormal vision and high resolution retinal imaging through adaptive optics, J Opt So. Am A, 14(1997)2884–2892.
  17. Fernández E J, Iglesias I, Artal P, Closed-loop adaptive optics in the human eye, Opt Lett, 26(2001)746–748.
  18. Piers P A, Fernández E J, Manzanera S, Norrby S, Artal P, Adaptive optics simulation of intraocular lenses with modified spherical aberration, Invst Ophth Vis Sci, 45(2004)4601–4610.
  19. Marcos S, Artal P, Atchison D A, Hampson K, Legras R, Lundström L, Yoon G, Adaptive optics visual simulators: a review of recent optical designs and applications, Biomed Opt Express, 13(2022)6508–6532.
  20. Roorda A, Williams D R, The arrangement of the three cone classes in the living human eye, Nature, 397(1999)520–522.
  21. Roorda A, Romero-Borja F, Donnelly III W J, Queener H, Hebert T J, Campbell M C W, Adaptive optics scanning laser ophthalmoscopy, Opt Express, 10(2002)405–412.
  22. Drexler W, Fujimoto J G, State-of-the-art retinal optical coherence tomography, Prog Retinal and Eye Res, 27(2008)45–88.
  23. Dubra A, Sulai Y, Norris J L, Cooper R F, Dubis A M, Williams D R, Carroll J, Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope, Biomed Opt Express, 2(2011)1864–876.
  24. Burns S A, Elsner A E, Sapoznik K A, Warner R L, Gast T J, Adaptive optics imaging of the human retina, Prog Retin Eye Res, 68(2019)1–30.
  25. Wahl D J, Jian Y, Bonara S, Zawadzki R J, Sarunic M V, Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice, Biomed Opt Express, 7(2015)1–12.
  26. Morgan J I W, Dubra A, Wolfe R, Merigan H, Williams D R, In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic, Inv Ophthalmol Vis Sci, 50(2009)1350–1359.
  27. Walters S, Feeks, Huynh K T, Hunter J J, Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye, Biomed Opt Express, 13(2022)389–407.
  28. Morgan J I W, The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay, Opt Physiol Opt, 36(2016)218–239.
  29. Vohnsen B, Rativa D, Ultrasmall spot size scanning laser ophthalmoscopy, Biomed Opt Express, 2(2011)1597–1609.
  30. Sulai Y N, Dubra A, Adaptive optics scanning ophthalmoscopy with annular pupils, Biomed Opt Express, 20(2012)1647–1661.
  31. Lu R, Aguilera N, Liu T, Liu J, Giannini J P, Li J, Bower A J, Dubra A, Tam J, In-vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection, Optica, 8(2021)333–343.
  32. Scoles D, Sulai Y N, Langlo C S, Fishman G A, Curcio C A, Carroll J, Dubra A, In vivo imaging of human cone photoreceptor inner segments, Invest Ophthalmol Vis Sci, 55(2014)4244–4251.
  33. Sredar N, Razeen M, Kowalski B, Carroll J, Dubra A, Comparison of confocal and non-confocal split-detection cone photoreceptor imaging, Biomed Opt Express, 12(2021)737–755.
  34. Qaysi S, Valente D, Vohnsen B, Differential detection of retinal directionality, Biomed Opt Express, 9(2018)6318–6330.
  35. Akondi V, Sawides L, Marrakchi Y, Gambra E, Marcos S, and Dorronsoro C, Experimental validations of a tunable-lens-based visual demonstrator of multifocal corrections, Biomed Opt Express, 9(2018)6302–6317.
  36. Sharmin N, Vohnsen B., Monocular accommodation response to random defocus changes induced by a tuneable lens, Vision Res, 165(2019)45–53.
  37. Booth M J, Adaptive optics in microscopy, Phil Trans R Soc A, 365(2007)2829–2843.
  38. Bueno J M, Palacios R, Chessey M K, Ginis H, Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images, Biomed Opt Express, 4(2013)1006–1013.
  39. Booth M J, Adaptive optical microscopy: the ongoing quest for a perfect image, Light Sci Appl, 3(2014)e165; doi.org/10.1038/lsa.2014.46 .
  40. Izeddin I, El Beheiry M, Andilla J, Ciepielewski D, Darzacq X, Dahan M, PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking, Opt Express, 20(2012)4957–4967.
  41. Lenz M O, Sinclair H G, Savell A, Clegg J H, Brown A C N, Davis D M, Dunsby C, Neil M A A, French P M W, 3-D stimulated emission depletion microscopy with programmable aberration correction, J Biophotonics, 7(2014)29–36.
  42. Ahn C, Hwang B, Nam K, Jin H, Woo T, Park J-H, Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping, J Innov Health Sci, 12(2019)1930002; doi.org/10.1142/S1793545819300027.
  43. Hu Q, Hailstone M, Wang J, Wincott M, Stoychev D, Atilgan H, Gala D, Chaiamarit T, Parton R M, Antonello J, Packer A M, Davis I, Booth M J, Universal adaptive optics for microscopy through embedded neural network control, Light Sci Appl, 12(2023)270; doi.org/10.1038/s41377-023-01297-x.
  44. Akondi V, Dubra A, Multi-layer Shack-Hartmann wavefront sensing in the point source regime, Biomed Opt Express, 12(2021)409–432.
  45. Jewel A R, Akondi V, Vohnsen B, A direct comparison between a MEMS deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing, J Eur Opt Soc-Rapid Pub, 8(2013)13073; doi.org/10.2971/jeos.2013.13073.
  46. Paine S W, and Fienup J R, Machine learning for improved image-based wavefront sensing, Opt Lett, 43(2018) 1235–1238.
  47. Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, Saito M, Tanida J, Vera E, Deep learning wavefront sensing, Opt Express, 27(2019)240–251.
  48. Ramírez-Quintero J S, Osorno-Quiroz A, Torres-Sepulveda W, Mira-Agudelo A, Experimental wavefront sensing techniques based on deep learning models using a Hartmann-Shack sensor for visual optics applications, Sci Rep, 15(2025)9652; doi.org/10.1038/s41598-024-80615-8.
  49. Campos-García M, Estrada-Molina A, and Díaz-Uribe R, New null screen design for corneal topography, Proc SPIE 8011(2011)801124, 22nd Congress of the International Commission for Optics: Light for the Development of the World; doi.org/10.1117/12.903397.
  50. Rodriguez-Rodriguez M I, Gonzalez-Utrera D, Aguirre-Aguirre D, Vohnsen B, Díaz-Uribe R, Corneal topographer using null-screen patterned within a quadrangular acrylic prism, Opt Continuum, 3(2023)36–50.
  51. Shack R V, Platt B C, Production and use of a lenticular Hartmann screen, J Opt Soc Am, 61(1971)656.
  52. Ragazzoni R, Pupil plane wavefront sensing with an oscillating prism, J Mod Optics, 43(1996)289–293.
  53. Riccardi A, Bindi N, Ragazzoni R, Esposito S, Stefanini P, Laboratory characterization of a Foucault-like wavefront sensor for adaptive optics, Proc SPIE, 3353(1998)941–951.
  54. Burvall A, Daly E, Chamot S R, Dainty C, Linearity of the pyramid wavefront sensor, Opt Express, 25(2006)11925–11934.
  55. Akondi V, Castillo S, Vohnsen B, Digital pyramid wavefront sensor with tunable modulation, Opt Express, 21(2013)18261–18272.
  56. Campbell H I, Zhang S, Greenaway A H, Restaino S, Generalized phase diversity for wave-front sensing, Opt Lett, 29(2004)2707–2709.
  57. de Groot P J, A review of selected topics in interferometric optical metrology, Rep Prog Phys, 82(2019)056101; doi.org/10.1088/1361-6633/ab092d.
  58. Acosta E, Chamadoira S, Blendowske R, Modified point diffraction interferometer for inspection and evaluation of ophthalmic components, J Opt Soc Am A, 23(2006)632–637.
  59. Vohnsen B, Castillo S, Rativa D, Wavefront sensing with an axicon, Opt Lett, 36(2011)846–848.
  60. Akondi V, Jewel A R, Vohnsen B, Digital phase-shifting point diffraction interferometer, Opt Lett, 39(2014) 1641–1644.
  61. Vohnsen B, Martins A C, Qaysi S, Sharmin N, Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device, Appl Opt, 57(2018)E199–E204.
  62. Martins A C, Vohnsen B, Measuring ocular aberrations sequentially using a digital micromirror device, Micromachines, 10(2019)117; doi.org/10.3390/mi10020117.
  63. Badal J, Optometre metrique international. Pour la measure simulanee de la refraction et d l’acuite visuelle meme chez le illetres, Annales d’Oculistique 75(1876)101–117.
  64. Alvarez L W, Humphrey W E, Variable power lens and system, US Patent, (1970) 3.507.565.
  65. Lohmann A W, A new class of varifocal lenses, Appl Opt, 9(1970)1669–1671.
  66. Barbero S, The Alvarez and Lohmann refractive lenses revisited, Opt Express, 17(2009)9376–9390.
  67. Acosta E, Sasián J, Phase plates for generation of variable amounts of primary spherical aberration, Opt Express, 19(2011)13171–13178.
  68. Banerjee K, Rajaeipour P, A Çağlar, Zappe H, Optofluidic adaptive optics, Appl Opt, 57(2018)6338–6344.
  69. Mecê P, Bertrand M, Cai Y, Rajaeipour P, Klykov S, Grieve K, Woofer-twetter adaptive optics approach for a compact Full-Field OCT high-resolution retinal imaging over a large field-of-view, Invest Ophthalmol Vis Sci ARVO-abstract 65(2024)3394.
  70. Lavigne J.-F, Véran J.-P, Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor, J Opt Soc Am A, 25(2008)2271–2279.
  71. Noll R J, Zernike polynomials and atmospheric turbulence, J Opt Soc Am A, 66(1976)207–211.
  72. Thibos L N, Applegate R A, Schwiegerling J T, Webb R, Standards for reporting the optical aberrations of eyes, J Ref Surg, 18(2013)S652–S660.
  73. Lakshminarayanan V, Fleck A, Zernike polynomials: a guide, J Mod Opt, 58(2011)545–561.
  74. Liang J, Grimm B, Goelz S, Bille J, Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor, J Opt Soc Am A, 11(1994)1949–1957.
  75. Prieto P M, Vargas-Martín F, Goelz S, Artal P, Analysis of the performance of the Hartmann-Shack sensor in the human eye, J Opt Soc Am A, 17(2000)1388–1398.
  76. Lundström L, Unsbo P, Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils, J Opt Soc Am A, 24(2007)569–577.
  77. Jaeken B, Lundström L, Artal P, Fast scanning peripheral wave-front sensor for the human eye, Opt Express, 19(2011)7903–7913.
  78. Vohnsen B, The impact of aberrations in a 3D retinal model eye, Proc SPIE 11814(2021)1181405, Current Developments in Lens Design and Optical Engineering XXII; doi.org/10.1117/12.2594117.
  79. Tyson R K, Principles of Adaptive Optics, CRC Press, 3rd Edn, (2011).
  80. Ross T S, Limitations and applicability of the Maréchal approximation, Appl Opt, 48(2009)1812–1818.
  81. Andersen T, Owner-Petersen M, Enmark A, Image-based wavefront sensing for astronomy using neural networks, J Astron Telesc Instrum Syst, 6(2020)034002; doi.org/10.1117/1.JATIS.6.3.034002.
  82. Soltanian-Zadeh S, Liu Z, Liu Y, Lassoued A, Cukras C A, Miller D T, Hammer D X, Farsiu S, Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes, Biomed Opt Express, 14(2023)815–833.
  83. Zhang L, Zhong L, Guo Y, Gong X, Rao C, Nondeterministic wavefront estimation based on deep learning for multi-band synchronous high-resolution reconstruction technology, Opt Express, 33(2025)9224–9245.
  84. Vellekoop I M, Mosk A P, Focusing coherent light through opaque strongly scattering media, Opt Lett, 32(2007) 2309–2311.
  85. Katz O, Small E, Guan Y, Silberberg Y, Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers, Optica, 1(2014)170–174.
  86. Paudel H P, Stockbridge C, Mertz J, Bifano T, Focusing polychromatic light through strongly scattering media, Opt Express, 21(2013)17299–17308.
  87. Paniagua-Díaz A M, Jiménez-Villar A, Grulkowski I, Artal P, Double-pass wavefront shaping for scatter correction in a cataract’s model, Opt Express, 29(2021)42208–42214.
  88. Levene J R, Sir George Biddell Airy, R S (1801-1892) and the discovery and correction of astigmatism, J Roy Soc London, 21(1966)180; doi.org/10.1098/rsnr.1966.0017.
  89. Marchese L E, Munger R, Priest D, Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?, J Opt Soc Am A, 22(2005)1471; doi.org/10.1364/JOSAA.22.001471.
  90. Fick A E, Eine Contactbrille, Archiv für Augenheilkunde, 17(1888)279–289.
  91. Charman, W N, Wavefront technology: past, present and future, Contact Lens & Anterior Eye, 28(2005)75–92.
  92. Waring IV G O, Price F W (Jr), Wirta D, McCabe C, Moshirfar M, Guo Q, Gore A, Liu H, Safyan E, Robinson M R, Safety and efficacy of AGN-190584 in individuals with presbyopia-The GEMINI 1 Phase 3 Randomized Clinical Trial, JAMA Ophthalmol, 140(2022)363–371.
  93. Pallikaris I G, Papatzanaki M E, Siganos D S, Tsilimbaris M K, A corneal flap technique for laser in situ keratomileusis: Human studies, Arch Ophthalmol, 109(1991)1699–1702.
  94. Jeganathan V S, Valikodath N, Niziol L M, Hansen S, Apostolou H, Woodward M A, Accuracy of a Smartphone-based Autorefractor Compared with Criterion-standard Refraction, Optom Vis Sci, 95(2018)1135–1141.
  95. Rodriguez-Lopez V, Dorronsoro C, Beyond traditional subjective refraction, Curr Opin Ophthalmol, 33(2022)228–234.
  96. Holden B A, Fricke T R, Wilson D A, Jong M, Naidoo K S, Sankaridurg P, Wong T Y, Naduvilath T J, Resnikoff S, Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050, Ophthalmology, 123(2016)1036–1042.
  97. French A N, Ashby R S, Morgan I G, Rose K A, Time outdoors and the prevention of myopia, Exp Eye Res, 114(2013)58–68.
  98. Vohnsen B, Geometrical scaling of the developing eye and photoreceptors and a possible relation to emmetropization and myopia, Vis Res, 189(2021)46–53.
  99. Rozema J J, Farzanfar A, Refractive development II: Modelling normal and myopic eye growth, Ophthalmic Physiol Opt, 45(2025)120; doi.org/10.1111/opo.13412.
  100. Bullimore M A, Johnson L A, Overnight orthokeratology, Cont Lens Anterior Eye, 43(2020)322; doi.org/10.1016/j.clae.2020.03.018..
  101. Laughton D, Hill J S, Wang L, McParland M, Chen Z, Control of myopia using contrast modulation spectacle lenses in a Chinese population: 12-month results, ARVO abstract 66(2025)2815.
  102. Lam C S Y, Tang W C, Zhang H Y, Lee P H, Tse D Y Y, Qi H, Vlasak N, To C H, Long-term myopia control effect and safety in children wearing DIMS spectacle lenses for 6 years, Sci Rep, 13(2023)5475; doi.org/10.1038/s41598-023-32700-7.
  103. Alvarez-Peregrina C, Sanchez-Tena M A, Villa-Collar C, Martinez-Perez C, Corcuera-Terrero B, Liu N, Li W, Sankaridurg P, Ohlendorf A, Clinical evaluation of MyoCare in Europe (CEME) for myopia management: one-year results; Ophthalmic Physiol Opt, 45(2025)1025–1035.
  104. Atchison D A, Optical models for human myopic eyes, Vis Res, 46(2006)2236–2250.
  105. IDC InfoBrief, sponsored by Microsoft, The Business Opportunity of AI: How Leading Organizations Around the World Are Using AI to Drive Impact Across Every Industry, IDC #US51364223, Nov. 2023 (see: https://blogs. microsoft.com/blog/2024/03/11/microsoft-makes-the-promise-of-ai-in-healthcare-real-through-new-collaborations- with-healthcare-organizations-and-partners/).
  106. Fauw J D, Ledsam J R, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O’Donoghue B, Visentin D, van den D G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes C O, Raine R, Hughes J, Sim D A, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw P T, Suleyman M, Cornebise J, Keane P A, Ronneberger O, Clinically applicable deep learning for diagnosis and referral in retinal disease, Nat Med, 24(2018)1342–1350.
  107. Kartha A, Sadeghi R, Bradley C, Tran C, Gee W, Dagnelie G, Measuring visual information gathering in individuals with ultra low vision using virtual reality, Sci Rep, 13(2023)3143; doi.org/10.1038/s41598-023-30249-z.
  108. Adhanom I B, MacNeilage P, Folmer E, Eye tracking in virtual reality: a broad review of applications and challenges, Virtual Real, 27(2023)1481–1505.
  109. D’Angelo J, Rodriguez R, Reeves S, Otero-Millan J, Measuring upright perception and torsional eye position in virtual reality, J Vision VSS-abstract, 22(2022)3817; doi.org/10.1167/jov.22.14.3817.93.