ASIAN JOURNAL OF PHYSICS

An International Peer Reviewed Research Journal
Frequency : Monthly,
ISSN : 0971 – 3093
Editor-In-Chief (Hon.) :
Dr. V.K. Rastogi
e-mail:[email protected]
[email protected]

AJP ISSN : 0971 – 3093
Vol 26, Nos 5-7, May-July, 2017

 

 Asian Journal of Physics

Vol. 26 No 5-7 (2017) 221-235

Nonlinear optical properties with spectral analysis of DL-Valinium nitrate- a DFT approach

G Edwin Sheelaa,C, D Manimaranb, I Hubert Joeb*,and V Bena JothyC
aDepartment of Physics, Muslim Arts College, Thiruvithancode-629 174,  India
bCentre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram-695 015,  India
cDepartment of Physics, Women’s Christian College, Nagercoil-629 001, India

An organic nonlinear optical (NLO) single crystal was synthesized by slow solvent evaporation technique from aqueous solutions of DL-valine and nitric acid (DLVN) at ambient temperature. The powder X-ray diffraction of the grown crystal was recorded and indexed. The optimized molecular structure, vibrational wavenumbers have been calculated by using density functional method (B3LYP) with the standard 6-311++G (d,p) basis set.. The normal coordinate analysis has been performed for a systematic assignment of IR and Raman bands with percentage PED. The strong hyperconjugative interaction and charge delocalization that leads to the stability of the molecule have been investigated with the aid of natural bond orbital (NBO) analysis. The frontier molecular orbital were constructed and the HOMO and LUMO energies were measured. The optical absorption study reveals the transparency of the crystal in the entire visible region and the lower edge was found to be 298 nm. Relative powder second harmonic generation (SHG) efficiency of the grown crystal was tested by Kurtz and Perry powder technique. © Anita Publications. All rights reserved.
Keywords: NLO, FT-IR, FT-Raman, NBO

Total Refs : 37

    1.      C.C. Frazier, M.P. Cockerham, J. Opt. Soc. Am. B 4 (1987) 1899-1903
    2.      P.N. Prasad, D.J. Williams, in: Introduction to Nonlinear Effects in Molecules and Polymers, Wiley, New York, 1991.
    3.      D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic press, New York, 1987.
    4.      E. Blomstrand, E.A. Newsholme, Nutrition 12 (1996) 485-490
    5.      K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochim. Acta A 69 (2008) 1283–1286.
    6.      K. Kirubavathi, K. Selvaraju, N. Vijayan, S. Kumararaman, Spectrochim. Acta A 71 (2008) 288–291.
    7.      P. Srinivasan, T. Kanagasekaran, R. Gopalakrishnan, Cryst. Growth Des. 8 (2008) 2340–2345.
    8.      Sweta Moitra, Saikat Kumar Seth, Tanusree Kar, J. Cryst. Growth 312 (2010) 1977–1982.
    9.      C.R. Raja, A.A. Joseph, Mater. Lett. 64 (2010) 108-110.
    10.    S. Moitra, T. Kar, J. Cryst. Growth 310 (2008) 4539-4543.
    11.    T.K. Kumar, R.S. Selvaraj, S. Janarthanan, Y.C. Rajan, S. Selvakumar, S. Pandi, M.S. Selvakumar, D.P. Anand, Eur. Phys. J. Appl. Phys. 50 (2010) 20401.
    12.    C. Jesintha John, T.S. Xavier, G. Lukose, I. Hubert Joe, Spectrochim. Acta, Part A 85 (2012) 66–73.
    13.    T. Joselin Beaula, D. Manimaran, I. Hubert Joe, V.K. Rastogi, V. Bena Jothy, Spectrochim. Acta,  A 126(2014) 170–177.
    14.    B J M  Rajkumar, V Ramakrishnan, J Raman Spectrosc, 31 (2000)1107-1112
    15.    Ivan Nemec, Ivana Cisarova , and Zdenek Micka J. Sol.St. Chem.158 (2001)1-13
    16.    Rao, S. N. & Parthasarathy, R., Am. Crystallogr. Assoc. (Spring) . (1974) 129.
    17.    N. Srinivasan, B. Sridhar and R. K. Rajaram Acta Cryst. E58 (2002) o95-o97.
    18.    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A,

Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr. Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09, Rev. A.02, Gaussian, Inc., Wallingford, CT, (2009).
    19.    Sundius T, J Mol Struct. 218(1990)321-326.
    20.    Sundius T, Vib Spectrosc. 29(2002)89-95.
    21.    Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F, NBO 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.
    22.    Pulay P, Fogarasi G, Pang F, Boggs J E, J. Am. Chem. Soc. 101(1979)2550-2560.
    23.    Rauhut G, Pulay P, J. Phys. Chem. 99(1995)3093-3100.
    24.    G. Socrates, Infrared Characterization Group Frequencies, John Wiley, New York (1980).
    25.    R.M.Silverstin, F.X.Webster, Spectrometric Identification of organic compounds sixth ed. Wiiley, Newyork, 1998.
    26.    B.C. Smith, Infrared Spectral Interpretation A Systematic Approach, CRC Press, Washington, DC, 1999.
    27.    G. Maroulis, J. Mol. Struct. (Theochem) 633 (2003) 177-197.
    28.    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy,Academic Press, New York, 1990.
    29.    S. Aruna, A. Anuradha, P. C. Thomas, M. Gulam Mohamed, S.A. Rajaseker, M. Vimalan, G. Mani, P. Sagayaraj, Ind. J. Pure and Applied Physics,

45 (2007) 524-528.
    30.    S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak, A.  Pietraszko, Synthetic Metals, 127(1-3) (2002) 99-104
    31.    E.D. Glendening, A.E. Reed, J. E. Carpenter, F. Weinhold, “NBO Version 3.1”, Theoretical Chemistry Institute and department of Chemistry, University of Wisconsin, Madisan, (1998).
    32.    D. Xue, S. Zhang, J. Phys. Chem. Sol, 57(1996)1321-1328
    33.    I. Fleming, Frontier Orbital and Organic Chemical Reactions, Wiley, London, 1976.
    34.    K. Jug, Z.B. Maksic, in: Z.B. Maksic (Ed.), Theoretical Model of Chemical Bonding,  Part 3, Springer, Berlin, 1991, p. 233.
    35.    S. Fliszar, Charge Distributions and Chemical Effects, Springer, New York, 1983.
    36.    L. Xiao-Hong et al., Theor. Chem. 969 (2011) 27–34.
    37.    S.K. Kurtz, T.T. Perry, J Appl Phys, 39 (1968) 3798-3813

 

 Asian Journal of Physics

Vol. 26 No 5-7 (2017) 237-248

 Structural and biological studies of 3-formyl-4-methoxyphenylboronic acid:
density functional theory and molecular docking approach

 

D Manimarana, I Hubert Joea,*, Sunila Abrahamb
aCentre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram-695 015, Kerala, India
bDepartment of Physics, Christian College, Chengannur-689 122, Kerala, India

Optimized geometry, hydrogen bonding interactions and biological evaluation of 3-formyl-4-methoxyphenylboronic acid have been investigated using vibrational spectroscopy techniques and molecular docking. Blue-shifting of C-H…O and red-shifting of O-H…O stretching wavenumbers confirm the presence of inter- and intra-molecular hydrogen bonding. The vibrational mode assignment has been performed on the basis of potential energy distribution by scaled quantum mechanical force-field methodology. The structural conformations of the molecule have been analyzed based on the molecular orbital calculations. The biological activity of the molecule has been evaluated with aurora-a kinease inhibited target protein. © Anita Publications. All rights reserved.
Keywords: Boronic acid; DFT; Molecular docking; FTIR; FT-Raman

Total Refs: 31

    1.    Hosmane NS (2012) Boron Science: New Technologies and Applications, CRC Press, New York
    2.    Yang W, Gao X, Wang B (2005) Biological and Medicinal Applications of Boronic Acids. in: Hall DG (Ed) Boronic Acids Preparation, Applications in Organic Synthesis and Medicine, Wiley-VCH Verlag GmbH & Co., Weinheim, pp 481-507
    3.    James TD, Phillips MD, Shinkai S (2006) Boronic Acids in Saccharide Recognition, RSC Publishing, London
    4.    Guo Z, Shin I, Yoon J (2012) Chem Commn 48:5956
    5.    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M , Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg J J, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT
    6.    Becke AD (1993) J Chem Phys 98:5648
    7.    Becke AD (1988) Phys Rev A 38:3098
    8.    Lee C, Yang W, Parr RG (1988) Phys Rev 378:785
    9.    Rauhut G, Pulay P (1995) J Phys Chem 99:3093
    10.    Scott AP, Radom L (1996) J Phys Chem 100:16502
    11.    Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) J Amer Chem Soc 105:7037
    12.    Fogarasi G, Pulay P (1986) J Mol Struct 141:145
    13.    Sundius T (1990) J Mol Struct 218:321
    14.    Allen WD, Csaszar AG, Horner DA (1992) J Amer Chem Soc 114:6834
    15.    Fogarasi G (1997) Spectrochim Acta A 53:1211
    16.    Baker J, Jarzecki AA, Pulay P (1998) J Phys Chem A 102:1412
    17.    Sundius T (2002) Vib Spectrosc 29:89
    18.    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 16:2785
    19.    Smith BC (1998) Infrared Spectral Interpretation: a systematic approach, CRC Press, Washington DC
    20.    Socrates G (1980) Infrared Characteristic Group Frequencies, John Wiley & Sons, New York
    21.    Bellamy LJ (1954) The Infrared Spectra of Complex Molecules, Wiley, New York
    22.    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to Infrared and Raman Spectroscopy, Academic Press, New York
    23.    Silverstein RM, Webster FX, Kiemle DJ (1998) Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York
    24.    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735
    25.    O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839
    26.    Felming I (1978) Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York
    27.    Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView version 3.1, Semichem Inc., Shawnee Mission KS
    28.    Sanner MF (1999) J Mol Graph Model 17:57
    29.    Heron NM, Anderson M, Blowers DP, Breed J, Eden JM, Green S, Hill GB, Johnson T, Jung FH, McMiken HH J, Mortlock AA, Pannifer AD, Pauptit RA, Pink J, Roberts NJ, Rowsell S (2006) Bioorg Med Chem Lett 16:1320
    30.    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235
    31.    Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, Pujol CA, Damonte EB (2004) Int J Biol Macromol 34:63

 

 Asian Journal of Physics

Vol. 26 No 5-7 (2017) 249-261

Structural and spectral studies of non-linear crystal L-Phenylalaninium Maleate

D R Leenaraj and I. Hubert Joe*
Centre for Molecular and Biophysics research, Department of Physics,
Mar Ivanios College, Thiruvananthapuram-695 015, India.

The single crystals of L-Phenylalaninium maleate are grown by slow evaporation technique and Fourier transform infrared and Raman spectra of the crystal was   recorded and analyzed. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers were calculated with the help of density functional theory method. A detailed interpretation of the vibrational spectra was carried out with the aid of potential energy distribution analysis. Vibrational analysis reveals the presence of O–H…O and N–H…O hydrogen bonding in the crystal. Theoretically predicted first order hyperpolarizability and HOMO─LUMO energy gap exhibits the non-linear optical activity. © Anita Publications. All rights reserved.

Total Refs : 49

    1.      Shen Y. R, The Principles of Non-linear Optics . (Wiley, New York) 1984
    2.      Ledoux I, Zyss J, Int. J. Nonlinear Opt. Phys. , 3(1994) 287
    3.      Andreazza P, Josse D, Lefaucheux F, Robert M.C, Zyss J, Phys.Rev. B , 45(1992) 7640
    4.      Wang Z, Hagan D. J, Van Stryland E. W, Zyss J, Vi-dakovik P, Torruellas E. W, J. Opt. Soc. Am. B ,14(1997) 76.
    5.      Castro E. A, Angel M, Arellano D, Santos J. G, J. Org. Chem. , 66(2001) 6571
    6.      Bhat M. N, Dharmaprakash S. M, J. Cryst. Growth , 236(2002) 376
    7.      Delfino M, Mol. Cryst. Liq. Cryst. , 52(1979) 271
    8.      Tapati Mallik and Tanusree Kar, J.Crystal Growth , 274(2005) 251
    9.      Young, V. R. J. Nutr. , 124(1994) 1517
    10.    Alagar M, Krishnakumar R. V, Natarajan S, Acta Cryst. , E57(2001) o968
    11.    Yogam F, Vetha Potheher I, Vimalan M, Jeyasekaran R, Rajesh Kumar T, Sagayaraj P, Spectrochim. Acta, Part A , 95(2012) 369
    12.    Suresh J, Krishnakumar R. V, Natarajan S, Acta Cryst. , E61(2005) 3625
    13.    Castro J. L, Lopez Ramırez M. R, Arenas J. F, Otero J. C, J. Mol. Struct. , 744(2005) 887
    14.    Amalanathan M, Hubert Joe I, Rastogi V. K, J. Mol. Struct. , 1006(2001) 513
    15.    Patil P. S, Dharmaprakash S. M, J. Cryst. Growth , 305(2007) 218
    16.    Binoy J, Jose Abraham P, Hubert Joe I, Jayakumar V. S, Pettit G.R, Nielsen O.F, J. Raman Spectrosc. , 35(2004) 939
    17.    Sajan D, Binoy J, Pradeep B, Venkata Krishna K, Kartha V. B, Hubert Joe I, Jayakumar V. S, Spectrochim. Acta A , 60(2004) 173
    18.    Sajan D, Binoy J, Hubert Joe I, Jayakumar V. S, Jacek Zaleski, J. Raman Spectrosc. , 36(2005) 221
    19.    Binoy J, Jose Abraham P, Hubert Joe I, Jayakumar V. S, Aubard J, Nielsen O. F, J. Raman Spectrosc. , 36(2005) 63
    20.    Frisch M. J, Trucks G. W, Schlegel H. B, Scuseria G. E, Robb M. A, Cheeseman J. R, Zakrzewski V.  G, Montgomery J. A, Jr., R. E/Stratmann, Burant J. C, Dapprich S, Millam J. M, Daniels A. D, Kudin  K. N, Strain M. C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C,  Adamo C, Clifford S, Ochterski J, Petersson G. A, Ayala P. Y, Cui Q, Morokuma K, Malick D. K,  Rabuck A. D, Raghavachari K, Foresman B, Cioslowski J, Ortiz J. V, Baboul A. G, Stefanov B. B,  Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R. L, Fox D. J, Keith T, Al-Laham  M.A, Peng C. Y, Nanayakkara A, Challacombe M, P.M.W. Gill, Johnson B, Chen W, Wong M. W,  Andres J. L, Gonzalez C, Head-Gordon M, Replogle E. S, Pople J. A, Gaussian 03, Revision C. 02, Gaussian, Inc, Wallingford C. T , (2004).
    21.    Scott A. P, Radom L, J. Phys. Chem. , 100(1996) 16503
    22.    Keresztury G, Holly S, Varga J, Besenyei G. A, Wang Y, Durig J. R, Spectrochim. Acta A , 49(1993) 2007, 2019
    23.    Keresztury G, Chalmers J.M, Griffith P.R, Raman Spectroscopy, Theory in Handbook of Vibrational Spectroscopy. (John Wiley & Sons Ltd, New York) 2002.
    24.    Jamroz M. H, Vibrational Energy Distribution Analysis: VEDA 4 Program, Drug Institute, Warsaw, Poland , (2004).
    25.    Varsanyi G, Vibrational Spectra of Benzene Derivatives . (Academic Press, New York) 1969.
    26.    Mauricio Alcolea palafox, J. Phys. Chem. A , 103(1999) 11366
    27.    Ravikumar C, Hubert Joe I, Sajan D, Chemical Physics , 369(2010) 1
    28.    James C, Jayakumar V. S, Hubert Joe I, J. Mol. Struct. , 830(2007) 56
    29.    Bellamy L. J, The infrared spectra of complex molecules . (Chapman and Hall, London) 1980.
    30.    Colthup N. B, Daly L. H, Wiberley S. E, Introduction to Infrared and Raman Spectroscopy. (Academic Press, New York) 1990.
    31.    Dollish F. R, FateleyW. G, Bentley F. F, Characteristic Raman frequencies of organic compounds . (John Wiley & Sons: New York) 1997.
    32.    Smith B, Infrared Spectral Interpretation: A Systematic Approach . (CRC press, Washington, DC 1999.
    33.    Hobza P, Havlas Z, Chem. Rev. , 100(2000) 4253
    34.    Ravikumar C, Hubert Joe I, Phys. Chem. Chem. Phys. , 12(2010) 9452
    35.    Amalanathan M, Hubert Joe I, Irena Kostova, J. Raman Spectrosc. , 78(2009) 1076
    36.    Xavier T. S, Naghmana Rashid, Hubert Joe I, Spectrochim. Acta, Part A , 78(2011) 319
    37.    Socrates G , Infrared and Raman Characteristic Group Frequencies: Tables and Charts, third ed., (Wiley, Chichester) 2001.
    38.    Vein D. L , Colthup N. B , Fateley W. G , Grasselli J. G , The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules . (Academic Press, New York) 1991.
    39.    Silverstein R. M, Webster F. X, Spectrometric Identification of Organic Compounds . (Jonh Wiley and sons, New York) 2003, 34.
    40.    Edsall T, Scheinberg H, J. Chem. Phys. , 8(1940) 520
    41.    Hubert Joe I, Aruldhas G, Anbu kumar S, Ramasamy P, J. Cryst. Res. Technol. , 29(1994) 685
    42.    Reva I. D, Stepanian S. G, Plokhotnichenko A. M, Radchenko E. D, Sheina G. G, Yu Blagoi P, J. Mol. Struct. , 318(1994) 1
    43.    Miec Z, Suste T, Baranovic G, Smrecki V, Holly S, Keresztury G, J.Mol. Struct. , 348(1995) 229
    44.    Arenas J. F, Tocon I. L, Otero J. C, Marcos J. I, J. Mol. Struct. , 349(1995) 29
    45.    Bredas J. L, Adant C, Tackx P, Persoons A, Chem. Rev. , 94(1994) 243
    46.    Nalwa H. S, Hanack M, Pawlowski G, Engel M. K, Chem. Phys. , 245(1999) 17
    47.    Burland D. M, Miller R. D, Walsh C. A, Chem. Rev. 94(1994) 31
    48.    Adant M , Dupuis M , Bredas J L , Int. J. Quantum Chem. , 56(1995) 49   
    49.    Choi C.H , Kertesz M , J. Phys. Chem. A , 10(1997) 3823.

 

 Asian Journal of Physics

Vol. 26 No 5-7 (2017) 263-269

Study of synthesis and characterization of iron oxide (Fe3O4) nanoparticles using PVP as stabilizers

S Veena Gopal and I Hubert Joe*
Centre for Molecular and Biophysics research, Department of Physics, Mar Ivanios College,
Thiruvananthapuram-695 015, India.

 Presenting one step process for the synthesis of iron Oxide nanoparticles, aqueous colloid using the multifunctional Poly Vinyl Pyrollidone (PVP), which electro statically complexes with aqueous Iron ions (One precursor as Fe2+ from FeCl2), reduces them and subsequently caps the nanoparticles [1]. The aqueous magnetic nano crystalline colloids centrifuged and filtered. The prepared samples were characterized by electronic spectra. Powdered XRD measurement shows that the peak of the diffractogram is in well agreement with theoretical data of Fe3O4. The crystalline size of the particles ranges from7-16nm with the increasing concentration of Poly Vinyl Pyrollidone (PVP). SEM studies shows that the agglomeration of the particle is found sensitive to PVP concentration. By the addition of PVP as a stabilizer, the particle was found separated which find application in MRI contrast agent. © Anita Publications. All rights reserved.
Keywords: Boronic acid; DFT; Molecular docking; FTIR; FT-Raman

Total Refs : 9

    1.    M. Aslam, E. A. Schultz, T. Sun, T. Meade, and V. P. Dravid, “Synthesis of Amine-Stabilized Aqueous Colloidal Iron Oxide Nanoparticles,” Crystal Growth & Design, vol. 7, no. 3, pp. 471–475, Mar. 2007.
    2.    K. Babin, D. M. Goncalves, and D. Girard, “Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism,” Biochimica et Biophysica Acta (BBA) – General Subjects, vol. 1850, no. 11, pp. 2276–2282, Nov. 2015.
    3.    Y.-W. Jun, J.-H. Lee, and J. Cheon, “Nanoparticle Contrast Agents for Molecular Magnetic Resonance Imaging,” Nanobiotechnology II, pp. 321–346.
    4.    W. Cacheris, J. Kaufman Robert, J. Richard Thomas, and R. Grabiak, “5571498 Emulsions of paramagnetic contrast agents for magnetic resonance imaging (MRI),” Magnetic Resonance Imaging, vol. 15, no. 4, p. XV, Jan. 1997.
    5.    L.Lodhia,G.Mandarano, Grad Cert,N.J Ferris, SF Cowell, “Synthesis Of Iron Oxide Nanoparticle for MRI”, Bo Medical Imaging and

Intervention Journal,2010,6(2).
    6.    R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Transactions on Magnetics, vol. 17, no. 2, pp. 1247–1248, Mar. 1981.
    7.    SyamKumar ,”Studies on Synthesis of Iron based Nano colloids by Chemical Reduction”, Dessertation (2009)
    8.    R. Krishnaveni, “Synthesis of iron oxide coated nickel oxide nanoparticles and its characterization,” International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Jul. 2013
    9.    H.-Y. Lee, S.-H. Lee, C. Xu, J. Xie, J.-H. Lee, B. Wu, A. Leen Koh, X. Wang, R. Sinclair, S. X. Wang, D. G. Nishimura, S. Biswal, S. Sun, S. H. Cho, and X. Chen, “Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent,” Nanotechnology, vol. 19, no. 16, p. 165101, Mar. 2008.

 

 Asian Journal of Physics

Vol. 26 No 5-7 (2017) 271-282

Space weather and ionospheric variability over low latitudes

Kamsali Nagaraja, B Praveen Kumar and S C Chakravarty
Department of Physics, Bangalore University, Bengaluru -560 056, India

A real-time model has been used to generate grid based Vertical Total Electron Content (VTEC) maps using ground based observation data from a network of dual frequency GPS (Global Positioning System) receivers deployed over the Indian region under the GAGAN (GPS Aided Geo Augmented Navigation) project. The output of a 24-hour model run of all stations includes hourly average values and diurnal plots of VTEC with 1° × 1° resolution in latitude-longitude. Apart from its utility for the navigation purpose, this real-time model is potentially suited to study ionosphere variations at high temporal and spatial resolutions. Using the available multi-station data for the low solar activity period of May 2007 to April 2008, the real-time model outputs are further analyzed to obtain monthly average diurnal variations grouped into equatorial (11-18° N) and anomaly (19-24° N) latitude zones. These monthly average diurnal curves are also produced using the IRI model under similar conditions. A comparison between the present real-time model and IRI model results for the winter, summer and equinoctial months show reasonably good agreement in overall magnitudes but there are some differences in the overall shape of the diurnal curve which appears much simplified for IRI model. The day to day and latitudinal variability of the VTEC are studied to understand the base level dynamics of the system. This is required if the VTEC data is to be used to search for signals pertaining to the space weather and geophysical phenomena. © Anita Publications. All rights reserved.
Keywords: TEC, GAGAN,Space weather ,Vertical Total Electron Content (VTEC), GPS (Global Positioning System) , Equinoctial months

Total Refs : 13

    1.    Rigler E J, Hill S M, Reinard A A, Steenburgh R A, Solar thematic maps for space weather operations, Space Weather,

10(2012)S08009; doi:10.1029/2012SW000780                 
    2.    Manchester (IV) W B, Gombosi T I, Roussev I, Ridley A, Zeeuw D L D, Sokolov I V, Powell K G, Tóth G, Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation, J Geophys Res, 109(2004)A02107, doi:10.1029/2003JA010150,
    3.    Schrijver C J, Dobbins R, Murtagh W, Petrinec S M, Assessing the impact of space weather on the electric power grid based on insurance claims for

industrial electrical equipment, Space Weather, 12(2014)487-498, doi:10.1002/2014SW001066, 2014
    4.    Jakowski N, Heise S, Wehrenpfennig A, Schlüter S, Reimer R, GPS/GLONASS-based TEC measurements as a contributor for space weather

forecast, Journal of Atmospheric and Solar-Terrestrial Physics, 64(2002)729-735. [email protected]
    5.    Bagiya Mala S, Joshi H P, Iyer K N, Aggarwal M, Ravindran S, Pathan B M, TEC variations during low solar activity period (2005–2007)

near the Equatorial Ionospheric Anomaly Crest region in India, Ann Geophys, 27(2009)1047-1057.
    6.    Chakravarty S C, A Novel Approach to Study Regional Ionospheric Variations Using a Real-Time TEC Model, Positioning,

5(2014)1-11; doi: 10.4236/pos.2014.51001.
    7.    Budden K G, The propagation of radio waves, (Cambridge University Press),1985.
    8.    Hofmann-Wellenhof B, Lichtenegger H, Collins J, Global Positioning System, Theory and Practice, 4th edn, (Springer-Verlag, Berlin, Heidelberg,

New York), 1992, p 389
    9.    Hoque M M, Jakowski N, Mitigation of ionospheric mapping function errors, Proceedings of the 26th International Technological Meeting of the

Satellite Division of the Institute of Navigation (ION GNSS+2013), Nashville, TN, 1848-1855, September, 2013.
    10.  Acharya R, Nagori N, Jain N, Sunda S, Regar S, Sivaraman M R, Bandopadhyay K, Ionospheric studies for the implementation of GAGAN,

Indian J Radio Space Phys, 36(2007)394-404.
    11.  Chakravarty S C, Kamsali Nagaraja, Jakowski N, Variation of TEC and related parameters over the Indian EIA region from ground and space

based GPS observations during the low solar activity period of May 2007–April 2008, Advances in Space Research, 59(2017)1223-1233.
    12.  Akhoondzadeh M, Parrot M, Saradjian M R, Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data,

Nat Hazards Earth Syst Sci, 10(2010)7-18.
    13.  Hocke K, Schlegel K, A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995, Ann Geophysicae, 14(1996)917-940.