Asian Journal of Physics Vol 31, No 7 (2022) 723-730

New family of Jacobi-Fourier aberrations for wavefront coding

E Acosta1, E González Amador1,2, A Padilla2 and J Arines1
1Department of Applied Physics, Faculty of Physics,
University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
2Department of Optics, Faculty of Optical Computing,University Politécnica de Tulancingo, 46629 Tulancingo Hidalgo, México
Dedicated to Prof Maria J Yzuel


Wavefront coding is a hybrid optical-digital imaging system technique which generates aberrations using a phase mask or a phase generating device at the exit pupil of an optical system in order to extend its depth of focus. The optical system generates an intermediate low-quality image blurred by the aberrations of the added phase and, a sharp final image is obtained by a deconvolution process involving the optical transfer function (OTF) of the whole optical system at the image plane. Many shapes for the added phase have been proposed and they differ among each other in the quality of the decoded images within a given depth of focus as well as the noise and artifacts transferred to the postprocessed image. In this work, we will present a new set of phase masks based on Jacobi-Fourier polynomials and show the advantages and disadvantages comparing with the commonly used trefoil aberration. © Anita Publications. All rights reserved.
Keywords: Wavefront coding, Jacobi-Fourier polynomials, Trefoil aberration, Fourier transform.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Dowski E R, Cathey W T, Extended depth of field through wave-front coding, Appl Opt, 34(1995)1859–1866.
  2. Barwick, D S, Increasing the information acquisition volume in iris recognition systems, Appl Opt, 47(2008)4684–4691.
  3. Muyo G, Singh A, Andersson M, Huckridge D, Wood A, Harvey A R, Infrared imaging with a wavefront-coded singlet lens, Opt Express,17(2009)21118–21123.
  4. Arnison M R, Cogswell C J, Sheppard C J, Török P, Wavefront coding fluorescence microscopy using high aperture lenses, in Optical Imaging and Microscopy: Techniques and Advanced Systems, (Eds) Török P, Kao F.-J, (Springer), 2003, pp 143–165.
  5. Acosta E, Olvera-Angeles M, González-Amador E, Sasian J, Schwiegerling J, Arines J, Wavefront coding with Jacobi–Fourier phase masks for retinal imaging, Appl Opt, 59(2020)G234-G238.
  6. Acosta E, Arines J, Optical-digital System Invariant to eye aberrations for retinal imaging, Investig Ophthalmol Vis Sci, 53(2012)3098–3098.
  7. Kubala K, Dowski E, Cathey WT, Reducing complexity in computational imaging systems, Opt Express, 11(2003)2102–2108.
  8. Nhu V, Fan Z, Minh N P, Chen S, Optimized square-root phase mask to generate defocus-invariant modulation transfer function in hybrid imaging systems, Opt Eng, 54(2015)035103; doi.org/10.1117/1.OE.54.3.035103.
  9. Zhao H, Li Y, Analytical and experimental demonstration of depth of field extension for incoherent imaging system with a standard sinusoidal phase mask, Chin Opt Lett, 10(2012)031101; doi: 10.3788/COL201210.031101.
  10. Yang Q, Liu L, Sun J, Optimized phase pupil masks for extended depth of field, Opt Commun, 272(2007)56–66.
  11. Chen S, Fan Z, Optimized asymmetrical tangent phase mask to obtain defocus invariant modulation transfer function in incoherent imaging systems, Opt Lett, 39(2014)2171–2174.
  12. Zhao H, Li Y, Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system, Appl Opt, 49(2010)229–238.
  13. Zhou F, Li G, Zhang H, Wang D, Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems, Opt Lett, 34(2009)380–382.
  14. Prasad S, Torgersen T C, Pauca V P, Plemmons R J, van der Gracht J, Engineering the pupil phase to improve image quality, In Visual Information Processing XII. Proc SPIE, 5108(2003)1-13; doi.org/10.1117/12.487572.
  15. González-Amador E, Padilla-Vivanco A, Toxqui-Quitl C, Arines J, Acosta E, Jacobi–Fourier phase mask for wavefront coding, Opt Lasers Eng, 126(2020)105880; doi.org/10.1016/j.optlaseng.2019.105880.
  16. Camacho-Bello C, Toxqui-Quitl C, Padilla-Vivanco A, Báez-Rojas J J, High-precision and fast computation of Jacobi–Fourier moments for image description, J Opt Soc Am, 31(2014)124–134.
  17. González-Amador E, Padilla-Vivanco A, Arines J, Olvera-Angeles M, Acosta E, Choice of Jacobi–Fourier phase masks for wavefront coding under different f-number, Jpn J Appl Phys, 59(2020)SOOD04; doi.org/10.35848/1347-4065/ab9652.
  18. Voelz D G, Computational Fourier optics: a MATLAB tutorial, (SPIE press) 2011.
  19. Zhou M, Alfadhl Y, Chen X, Optimal spatial sampling criterion in a 2D THz holographic imaging system, IEEE Access, 6(2018)8173–8177.
  20. Acosta E, González-Amador E, Arines J, Optimizing sampling and padding at the pupil plane for light propagation simulations based in Fourier Transforms for wavefront coding, Asian J Phys, 30(2021)1235–1241.