Asian Journal of Physics Vol. 33, No 11 (2024) 683-688

Bell state discrimination and error correction

Manu Gupta1, Abdul Q Batin2, Rajiuddin S K2 and Prasanta K Panigrahi2
1Digital Transformation and IT-Shahi Exports Pvt Ltd, Bangalore–560 102, India
2Center for Quantum Science and Technology, Siksha‘O’Anusandhan University, Bhubaneswar-751 030, India


An ancilla-based single particle measurement scheme is illustrated for Bell state discrimination which does not lead to the collapse of the wave function. It enables the extraction of partial information, e.g., parity and phase independently, that generalizes to multi-particle entangled states of qubits, which also applied to qudits. It can be used for error correction in a quantum circuit architecture involving basic gates like Hadamard and Controlled-NOT. It helps unravel the syndrome operators and, what is more, in the multi-partite state that the individual constituents lack. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.11.2024.683-688
Keywords: Bell state discrimination, Nondestructive discrimination, Quantum error correction.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Nielsen M A, Chuang I L, Quantum Computation and Quantum Information, (Cambridge University Press), 2010.
  2. Stolze J, Suter D, Quantum computing: a short course from theory to experiment, (Wiley-Vich), 2008.
  3. Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A, Experimental quantum teleportation, Nature, 390(1997)575–579.
  4. Pan J W, Bouwmeester,Weinfurter H, Zeilinger, Experimental entanglement swapping: entangling photons that never interacted, Phys Rev Lett, 80(1998)3891–3894.
  5. Mattle K, Weinfurter H, Kwait P G, Zeilinger A, Dense coding in experimental quantum communication, Phys Rev Lett,76(1996)4656; doi.org/10.1103/PhysRevLett.76.4656.
  6. Carvalho A R R, Mintert F, Buchleitner A, Decoherence and Multipartite Entanglement, Phys Rev Lett, 93(2004) 230501; doi.org/10.1103/PhysRevLett.93.230501.
  7. Hein M, Dür W, Briegel H.-J, Entanglement properties of multipartite entangled states under the influence of decoherence, Phys Rev A, 71(2004)032350; doi.org/10.1103/PhysRevA.71.032350.
  8. Clauser J F, Shimony A, Bell’s theorem. Experimental tests and implications, Rep Prog Phys, 41(1978)1881; doi. 10.1088/0034-4885/41/12/002.
  9. Aspect A, Grangier P, Roger G, Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: A New Violation of Bell’s Inequalities, Phys Rev Lett, 49(1982)91; doi.org/10.1103/PhysRevLett.49.91.
  10. Greenberger D M, Horne M A, Shimony A, Zeilinger A, Bell’s theorem without inequalities, Am J Phys, 58(1990) 1131–1143.
  11. Mair A, Vaziri A, Weihs G, Zeilinger A, Entanglement of the orbital angular momentum states of photons, Nature, 412(2001)313–316.
  12. Erhard M, Krenn M, Zeilinger A, Advances in high-dimensional quantum entanglement, Nat Rev Phys, 2(2020)365–381.
  13. Ghosh S, Kar G, Roy A, Sarkar D, Distinguishability of maximally entangled states, Phys Rev A, 70(2004)022304; doi.org/10.1103/PhysRevA.70.022304.
  14. Einstein A, Podolsky B, Rosen N, Can quantum-mechanical description of physical reality be considered complete?, Phys Rev, 47,(1935) 777; doi.org/10.1103/PhysRev.47.777.
  15. Genovese M, Research on hidden variable theories: A review of recent progresses, Phys Rep, 413(2005)319–396.
  16. Wootters W K, Zurek W H, A single quantum cannot be cloned, Nature, 299(1982)802–803.
  17. Walgate J, Short A J, Hardy L, Vedral V, Local distinguishability of multipartite orthogonal quantum state, Phys Rev Lett, 85(2000)4972–4875.
  18. Gosh S, Kar G, Roy A, Sen A (De), Sen U, Distinguishability of Bell states, Phys Rev Lett, 87(2001)277902; doi.org/10.1103/PhysRevLett.87.277902.
  19. Virmani S, Sacchi M F, Plenio M B, Markham D, Optimal local discrimination of two multipartite pure states, Phys Lett A, 288(2001)62–68.
  20. Chen Y X, Yang D, Optimal conclusive discrimination of two non-orthogonal pure product multipartite states, Phys Rev A, 64(2001)064303; doi.org/10.1103/PhysRevA.64.064303.
  21. Lutkenhaus N, Calsamiglia J, Suominen K A, Bell measurement for teleportation, Phys Rev A, 59(1998)3295; doi.org/10.1103/PhysRevA.59.3295.
  22. Cola M M, Paris M G A, Teleportation of bipartite state using single entangled pair, Phys Lett A, 337(2005)10–16.
  23. Pan J W, Zeilinger A, Greenberger-Horne-Zeilinger-state analyzer, Phys Rev A, 57(1998)2208–2211.
  24. Kim Y H, Kulik S P, Shih Y, Quantum teleportation of a polarization state with a complete Bell state measurement, Phys Rev Lett, 86,(2001)1370–1373.
  25. Boschi D, Branc S,Martini F D, Hardy L, Popescu S, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys Rev Lett, 80(1998)1121–1125.
  26. Taghavi S, Kosut R L, Lidar D A, Channel-optimized quantum error correction, IEEE Trans Inf Theory, 56(2010) 1461–1473.
  27. Müller M, Rivas A, Martínez E.A, Nigg D, Schindler P, Monz T, Blatt R, Martin-Delgado M A, Iterative phase optimization of elementary quantum error correcting codes, Phys Rev X, 6(2016)031030; doi.org/10.1103/PhysRevX.6.031030.
  28. Nigg D, Müller M, Martinez E A Schindler P, Monz T, Blatt R, Martin-Delgado M A, Quantum computations on a topologically encoded qubit, Science, 345(2014)302–305.
  29. Goswami A, Mhalla M, Savin V, Fault-tolerant preparation of quantum polar codes encoding one logical qubit, Phys Rev A, 108(2023)042605; doi. org/10.1103/PhysRevA.108.042605.
  30. Goswami A, Mhalla M, Savin V, Factory-based fault-tolerant preparation of quantum polar codes encoding one logical qubit, Phys Rev A, 110(2024)012438; doi.org/10.1103/PhysRevA.110.012438.
  31. Panigrahi P K, Gupta M, Pathak A, Srikanth R, Circuits for distributing quantum measurement, AIP Conf Proc 864,197(2006); dx.doi.org/10.1063/1.2400891.
  32. Gupta M, Pathak A, Srikanth R, Panigrahi P K, General Circuits for Indirecting and Distributing Measurement in Quantum Computation, Int J Quantum Inf, 5(2007)62; doi.org/10.1142/S0219749907003092.
  33. Sisodia M, Shukla A, Pathak A, Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer, Phys Lett A, 381(2017)3860–3874.
  34. Samal J R, Gupta M ,Panigrahi P K, Kumar A, Non-destructive discrimination of Bell states by NMR using a single ancilla qubit, J Phys B, At Mol Opt Phys, 43(2010)095508; doi. 10.1088/0953-4075/43/9/095508.
  35. Bilash B, Lim Y, Kwon H, Kim Y, Lim H T, Song W, Kim Y S, Nondestructive discrimination of Bell states between distant parties, Phys Rev A, 110(2024) 042407; doi.org/10.1103/PhysRevA.110.042407.
  36. Ghosh D, Agarwal P, Pandey P, Behera B K, Panigrahi P K, Automated error correction in IBM quantum computer and explicit generalization, Quantum Inf Process, 17(2018)153; doi.org/10.1007/s11128-018-1920-z. .
  37. Pandey P, Prasath S, Gupta M, Panigrahi P K, Automated error correction for generalized Bell states,arXiv:1008.2129 (2010).