Asian Journal of Physics Vol. 33, Nos 5 & 6 (2024) 349-368

Null screens and corneal topography

Rufino Díaz-Uribe1, Martín Isaías Rodríguez-Rodríguez2, and Yobani Mejía3
1Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Apdo. Postal 70-186, México City, 104510, Mexico
2Facultad de Estudios Superiores Iztacala UNAM, Avenida de los Barrios No. 1 Col. Los Reyes Iztacala, Tlalnepantla Estado de México C.P. 54090, Mexico
3Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia


This paper presents a review of the null screen test method for measuring the anterior surface of the cornea. The paper is focused on the field curvature and the skew ray problem, both present in the specular topographers based on the Placido disc targets, and how they can be solved by the null screen method. The main issues related to this technique such as null-screen design, setup, quantitative evaluation methods and different target configurations used in experimental and commercial devices are reviewed. This review shows that the Null-Screen testing method has become an important tool for measuring the anterior surface of human corneas. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.5-6.2024.349-368
Keywords: Optical Deflectometry, Null Screens, Corneal Topography.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Levine J R, The true inventors of the keratoscope and photo-keratoscope, Br J Hist Sci, 2(1965)324–342.
  2. Gullstrand A, Photographic-ophthalmometric and clinical investigations of corneal refraction, Optom Vis Sci, 43(1966)143–197.
  3. Koch D D (1992), Wakil J S, Samuelson S W, Haft E A, Comparison of the accuracy and reproducibility of the keratometer and the EyeSys Corneal Analysis System Model I, J Cataract Refract Surg, 18(1992)342–347.
  4. Eyesys (2024); http://eyesys.com/products/desktop.html.
  5. Atlas (2024); https://www.zeiss.com/meditec/en/products/zeiss-corneal-topographers/zeiss-atlas-500-corneal-topographer-us.html.
  6. Cornea (2024); https://www.essilor-instruments.com/product-cornea-550/.
  7. Cairns G, McGhee CNJ, Orbscan computerized topography: Attributes, applications, and limitations, J Cataract Refract Surg, 31(2005)205–220.
  8. Pentacam; https://www.pentacam.com/int, (2024).
  9. Mohammadpour M, Heidari Z Pentacam, In: Mohammadpour M (ed), Diagnostics in Ocular Imaging, (Springer), 2021.
  10. Dorronsoro C, Pascual D, Pérez-Merino P, Kling S, Marcos S, Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas, Biomed Opt Express, 3(2012)473–487.
  11. Ludlam W M, Wittenberg S, Measurements of the ocular dioptric elements utilizing photographic methods. Part II. Cornea-Thoretical considerations, Optom Vis Sci, 43(1966)249–267.
  12. Mejía-Barbosa Y, Malacara-Hernández D, Object surface for applying a modifed Hartmann test to measure corneal topography, Appl Opt, 40(2001)5778–5786.
  13. El Hage S G, A New Conception of the Corneal Topology and Its Application, Optica Acta: Int J Opt, 19(1972)431–433.
  14. Klein S A, Axial curvature and the skew ray error in corneal topography, Optom Vis Sci, 74(1997)931–944.
  15. Applegate R A, Howland C H, Noninvasive Measurement of Corneal Topography, IEEE Engineering in Medicine and Biology Magazine, 14(1995)30–42.
  16. Schwiegerling J, Miller J M, A Videokeratoscope Using a Distorted Checkerboard Target, in Vision Science and its Applications, Technical Digest Series, (Optica Publishing Group, 1998), paper MA.4.
  17. Díaz-Uribe R, Campos-García M, Null-screen testing of fast convex aspheric surfaces, Appl Opt, 39(2000)2670–2677.
  18. Sicam V A, van der Heijde R G. Topographer reconstruction of the nonrotation-symmetric anterior corneal surface features, Optom Vis Sci, 83(2006)910–918.
  19. Sicam V A, Snellenburg J J, van der Heijde RG, van Stokkum I H, Pseudo forward ray-tracing: a new method for surface validation in cornea topography, Optom Vis Sci, 84(2007)915–923.
  20. Gómez-Tejada D, Malacara-Hernández Z, Malacara-Doblado D, Malacara Hernández D, Zonal integration of circular Hartmann and Placido patterns with nonrotationally symmetric aberrations, J Opt Soc Am A, 37(2020)1381–1389.
  21. Moreno-Oliva V I, Campos-García M, Bolado-Gómez R, Díaz-Uribe R, Point shifting in the optical testing of fast aspheric concave surfaces by a cylindrical screen, Appl Opt, 47(2008)644–651.
  22. Moreno-Oliva V I, Campos-García M, Díaz-Uribe R, Improving the quantitative testing of fast aspherics with two-dimensional point shifting by only rotating a cylindrical null screen, J Opt A: Pure Appl Opt, 10(2008)104029; doi.10.1088/1464-4258/10/10/104029.
  23. Campos-García M, Bolado-Gómez R, Díaz-Uribe R, Testing fast aspheric concave surfaces with a cylindrical null screen, Appl Opt, 47(2008)849–859.
  24. Moreno-Oliva V I, Campos-García M, Granados-Agustín F S, Santiago-Alvarado A, Díaz-Uribe R, Improving fast aspheric convex surface test with dynamic null screens using LCDs, Appl Opt, 50(2011)3101–3109.
  25. Campos-García M, Díaz-Uribe R, Granados-Agustin F S, Testing fast aspheric convex surfaces with a linear array of sources, Appl Opt, 43(2004)6255–6264.
  26. Avendaño-Alejo M, Díaz-Uribe R, Testing a fast off-axis parabolic mirror using tilted null-screens, Appl Opt, 45 (2006)2607–2614.
  27. Avendaño-Alejo M, Moreno-Oliva V I, Campos-García M, Díaz Uribe R, Quantitative evaluation of an off-axis parabolic mirror by using a tilted null-screen, Appl Opt, 48(2009)1008–1015.
  28. Aguirre-Aguirre D, Villalobos-Mendoza B, Díaz-Uribe R, Manuel Campos-García, Null-screen design for highly freeform surface testing, Opt Express, 28(2020)36706–36722.
  29. Gonzalez-Utrera D, Aguirre-Aguirre D, Rodríguez-Rodríguez M I, Díaz-Uribe R, Null-screen testing of the complementary freeform surfaces of an adjustable focus lens, Opt Express, 29(2021)21698–21710.
  30. Gonzalez-Utrera D, Aguirre-Aguirre D, Díaz-Uribe R, Alternative Method to Design Null-screen for testing Freeform Surfaces, Frontier in Optics/Laser Science, Lee B, Mazzali C, Corwin K, Jason Jones R J, (eds), OSA Technical Digest (Optica Publishing Group, 2020), paper FM1A.4.
  31. Gonzalez-Utrera D, Villalobos-Mendoza B, Diaz-Uribe R, Aguirre-Aguirre D, Modeling, fabrication, and metrology of 3D printed Alvarez lenses prototypes, Opt Express, 32(2024)3512–3527.
  32. Campos-García M, Cossio-Guerrero C, Moreno-Oliva V I, Huerta-Carranza O, Surface shape evaluation with a corneal topographer based on a conical null-screen with a novel radial point distribution, Appl Opt, 54(2015)5411– 5419.
  33. Rodriguez-Rodríguez M I, Jaramillo-Nuñez A, Díaz-Uribe R, Dynamic point shifting with null screen using three LCDs as targets for corneal topography, Appl Opt, 54(2015)6698–6710.
  34. Rodriguez-Rodríguez M I, Gonzalez-Utrera D, Aguirre-Aguirre D, Vohnsen B, Díaz-Uribe R, Corneal topographer using null-screen patterned within a quadrangular acrylic prism, Opt Continuum, 3(2024)36–50.
  35. Díaz-Uribe R, Campos-García M, Medium Precision Geometrical Test for Very Fast Aspheres, in Frontiers in Optics, OSA Technical Digest (CD) (Optica Publishing Group), 2006, paper OFTuA1.
  36. Aguirre-Aguirre D, Campos-García M, Díaz-Uribe R, Villalobos-Mendoza B, General equations for the null-screen test for aspherical surfaces with deformation coefcients, Appl Opt, 57(2018)10230–10238.
  37. Rodríguez-Rodríguez M I, Método de corrimiento dinámico de puntos en queratometría por pantallas nulas, Ph D Thesis, Instituto Nacional de Astrofísica Óptica y Electrónica, México, (2015).
  38. Rodriguez-Rodríguez M I, Jaramillo-Nuñez A, Díaz-Uribe R, Dynamic point shifting with null screen using three LCDs as targets for corneal topography, Appl Opt, 54(2015)6698–6710.
  39. Rodríguez Rodríguez M I, Valderrama-Juárez C E, Damián-Zamacona J R, Díaz-Uribe R, Corneal topography using Dynamic point shifting method in quadrangular OLED prism, 2022; Proc SPIE Vol 12221: 122211C 1-10.
  40. Mejía Y, Díaz-Uribe R, Third order distortion analysis from an envelope curve, Opt Commun, 454(2020)124492; doi.org/10.1016/j.optcom.2019.124492.
  41. Aguirre-Aguirre D, Diaz-Uribe R, Campos-Garcia M, Villalobos-Mendoza B, Izazaga-Pérez R, Huerta-Carranza O, Fast conical surfaces evaluation with null-screens and randomized algorithms, Appl Opt, 56(2017)1370–1382.
  42. Mejía Y, Galeano J C, Corneal topographer based on the Hartmann test, Optom Vis Sci, 86(2009)370–381.
  43. Rayces J L, Exact Relation between Wave Aberration and Ray Aberration, J Mod Opt, 11(1964)85–88.
  44. Snellenburg J J, Braaf B, Hermans E A, van der Heijde RGL, Sicam VADP, Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems, Opt Express, 18(2010)19324–19338.
  45. Díaz-Uribe R, Granados-Agustín F, Theory for Evaluation of the Corneal Shape in Laser Keratopography, in Vision Science and its Applications, Technical Digest Series, (Optica Publishing Group, 1996), paper SuB.1.
  46. Díaz-Uribe R, Granados-Agustín F, Corneal Shape Evaluation by Using Laser Keratopography, Optom Vis Sci, 76((1999)40–49.
  47. Díaz-Uribe R, Medium-precision null-screen testing of off-axis parabolic mirrors for segmented primary telescope optics: the Large Millimeter Telescope, Appl Opt, 39(2000)2790–2804.
  48. Ghozeil I, Simmons J E, Screen Test for Large Mirrors, Appl Opt, 13(1974)1773–1777.
  49. Cornejo-Rodriguez A, Ronchi Test, in Optical Shop Testing, Chapter 9, 3rd Edn, (ed) Daniel Malacara, (John Wiley & Sons, Inc.), 2007.
  50. Malacara-Doblado D, Ghozei I, Hartmann–Shack, and Other Screen Tests, in Optical Shop Testing, Chapter 10, 3rd edn, (ed) Daniel Malacara, (John Wiley & Sons, Inc,), 2007.
  51. Southwell W H, Wave-Front Estimation from Wave-Front Slope Measurements, J Opt Soc Am, 70(1980)998–1006.
  52. William H, Teukolsky S A, Vetterling William, Flannery B P, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, (Cambridge University Press, USA), 1992,
  53. Mahajan V N, Zernike Polynomials and Wavefront Fitting, in Optical Shop Testing, Chapter 13, 3rd edn, (ed) Daniel Malacara, (John Wiley & Sons, Inc), 2007.
  54. Hernández-Gómez G, Malacara-Doblado D, Malacara-Hernández Z, Díaz-Uribe R, Malacara-Hernández D, Modal Integration of Hartmann and Shack-Hartmann Patterns, J Opt Soc Am A, 31(2014)846–851.
  55. Funes-Maderey I, Díaz-Uribe R, Corneal topography reconstruction by videoqueratometry in three dimensions,1997OSA Annual Meeting, Long Beach. California, EUA. 12 – 17 October,1997. See also: I. Funes-Maderey, Videoqueratometría de campo plano, BSc thesis in Physics, Facultad de Ciencias, UNAM, México, December,1998.
  56. Colín-Flores R, Díaz-Uribe R, Análisis de la planicidad de campo para imágenes de pantallas cilíndricas formadas por superfcies esféricas en la aproximación parabasal. XLVIII Congreso Nacional de Física, Sociedad Mexicanade Física, Guadalajara, Jalisco, México, 17-21 October, 2005.
  57. Estrada-Molina A, Topografo Corneal Portatil Basado en Pantallas Nulas (Portable Corneal Topographer Based on Null Screens), Ph D Thesis, Universidfad Nacional Autonoma de Mexico, México, (2014).
  58. https://blepsvision.com/ consulted May 26th, 2024.
  59. Campos-García M, Armengol-Cruz V E, Osorio-Infante A I, Evaluating the anterior corneal surface using an improved null-screen system, OSA Continuum, 2(2019)736–748.
  60. Campos-García M, Aguirre-Aguirre D, Moreno-Oliva V I, Huerta-Carranza O, Armengol-Cruz V de E, Measurement and correction of misalignments in corneal topography using the null-screen method, OSA Continuum, 4(2021)158–170.
  61. Campos-García M, Pantoja-Arredondo L Á, Aguirre-Aguirre D, Moreno-Oliva V I, Huerta-Carrranza O, ArmengolCruz V E, Measurements of corneal topography using a compact null-screen corneal topographer with a mobile device, Proc SPIE 11873, Optical Fabrication, Testing, and Metrology VII, 118730F (12 September 2021); doi. org/10.1117/12.2592802.
  62. Peña-Conzuelo A, Campos-García M, Modeling the conical corneal null-screen topographer with the Fermat principle, Proc SPIE 11352, Optics and Photonics for Advanced Dimensional Metrology, 113521C (1 April 2020); doi.org/10.1117/12.2556053.
  63. Peña-Conzuelo A (2020-2), Campos-García M, Aguirre-Aguirre D, Huerta-Carranza O, Analysis of the systematic and random errors in the conical corneal null-screen topographer, Proc SPIE 11352, Optics and Photonics for Advanced Dimensional Metrology, 113521H (1 April 2020); doi.org/10.1117/12.2556056.
  64. Campos-García M, Huerta-Carranza O, Pantoja-Arredondo L Á, Cruz-Félix Á S, Santiago-Alvarado A, Aguirre-Aguirre D, Moreno-Oliva V I, Camargo-Fierro C, Conical null-screen design for evaluating a biónic surface using a smartphone-based corneal topographer, Proc SPIE 12221, Optical Manufacturing and Testing XIV, 122210L (3 October 2022); doi.org/10.1117/12.2633701.
  65. Campos-García M, Aguirre-Aguirre D, Pérez-Lomelí J S, Peña-Conzuelo A, Huerta-Carranza O, Camargo-Fierro C, Design of a compact corneal topographer to characterize the shape of the cornea, Proc SPIE 11352, Optics and Photonics for Advanced Dimensional Metrology, 113521A (1 April 2020); doi.org/10.1117/12.2556052.
  66. Campos-García, Aguirre-Aguirre D, Lechuga-Núñez J A, Peña-Conzuelo A, Design of a null-screen for a compact corneal topographer, Proc SPIE 11057, Modeling Aspects in Optical Metrology VII, 110570I (21 June 2019). doi.org/10.1117/12.2526241.
  67. Huerta-Carranza O, Campos-García M, Moreno-Oliva V I, Aguirre-Aguirre D, Pérez-Lomelí J S, Smartphone-based corneal topography with null-screens, Appl Opt, 61(2022)1381–1388.
  68. Rodríguez-Rodríguez M I, Jaramillo-Núñez A, Díaz-Uribe R, Dynamic point shifting in null screen videokeratometry, Proc SPIE 8011: 80119H.2011; 1–8.
  69. Díaz-Uribe R (2021), Rodríguez-Rodríguez M I, APARATO MÉTODO Y SISTEMA PORTÁTIL PARA MEDIR LA TOPOGRAFÍA CORNEAL [Portable Apparatus, Method and System for measuring the corneal topography], Mexican Patent 378804, IMPI (10 March 2021).
  70. Valderrama-Juárez E, Díaz-Uribe R, Experimental results of a quadrangular OLED prism topographer prototype with Dynamic Point Shifting, in Latin America Optics and Photonics (LAOP) Conference 2022, Technical Digest Series (Optica Publishing Group), paper W3D.4.
  71. Rodríguez- Rodríguez M I, Valderrama-Juárez C E, Damián-Zamacona J R, Díaz-Uribe R, Corneal topography using Dynamic point shifting method in quadrangular OLED prism, Proc SPIE, 2022; 12221: 122211C 1-10.