Asian Journal of Physics Vol 32, Nos 9 – 12 (2023) 615-625

A review on high voltage subsystems for satellite applications: Design criticalities

Christopher Parmar, Vasantray Jani, Rajendra Singh, Shilpi Soni, and Dinesh Kumar Singh
Space Applications Centre, ISRO, Ahmedabad-380 015, India
Dedicated to Prof B N Basu


High-voltage subsystems play a crucial role in the functioning of satellites and rockets. They are responsible for amplifying radio frequency signals, generating X-rays, measuring magnetic and electric fields, detecting and measuring charged particles, and providing propulsion. This review paper discusses the scientific instruments commonly used in satellite environments that operate with high-voltage power supplies, including TWTA, ion thrusters, lasers, X-ray spectrometers, magnetometers, electric field sensors, charge particle detectors, and electric propulsion units. The paper also discusses the critical design points that need to be considered for high-voltage power supply systems in space, such as component selection, layout and assembly design, and radiation hardening. The review provides insights into the challenges faced in designing and operating high-voltage power supplies in space and highlights the importance of addressing these challenges to ensure mission success. A prototype HVEPC was developed to cater high voltages of continuous wave TWT for space applications. The HVEPC was designed to withstand harsh environment of space for 15 years in-orbit life for GEO missions. © Anita Publications. All rights reserved.
Keywords: High-voltage Subsystems, Space Communication, Propulsion, X-rays, Charged particles, TWTA, Lasers, High-voltage Electronics power Conditioner.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Gilmour A S (Jr), Microwave tubes, Dedham, 1986.
  2. Volker S, Adolf N, Sebastien B, Critical technologies for q-band epcs, in ´ 2019 European Space Power Conference (ESPC), 2019, pp 1–7.
  3. Hagopian J, Bolcar M, Chambers J, Crane A, Eegholm B, Evans T, Hetherington S, Mentzell E, Thompson P L,   Ramos-Izquierdo L, Vaughnn D, Advanced topographic laser altimeter system (atlas) receiver telescope assembly (rta) and transmitter alignment and test, Earth Observing Systems XXI, vol 9972, SPIE, 2016, pp 55–67.
  4. Pencil E J, An overview of recent developments in electric propulsion for nasa science missions, in 2008 IEEE Aerospace Conference, 2008, pp 1–9.
  5. Jugroot M, Christou A, Plasma-based thrusters: Electrostatic and electromagnetic coupling, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), 2014, pp 1–1.
  6. Levchenko I, Xu S, Teel G, Mariotti D, Walker M, Keidar M, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials, Nat Commun, 9(2018)879; doi.org/10.1038/s41467-017-02269-7.
  7. David L C, Varghese J T, Syamala SRNA, Ion propulsion technology: Nasa’s evolutionary xenon thruster (next) development and long duration tests results and its applications, 2020 Advances in Science and Engineering Technology International Conferences (ASET), 2020, pp 1–5.
  8. European Space Agency (2018) Electric blue thrusters propelling bepicolombo to mercury.
  9. NASA, PIXL: Planetary Instrument for X-ray Lithochemistry, https://mars.nasa.gov/mars2020/spacecraft/instruments/pixl/for-scientists/.
  10. Liebe C C, Pedersen D A K, Allwood A, Bang A, Bartman S, Benn M, Denver T, Doran G, Foote M C, Jørgensen A, Jørgensen J L, Meras P, Setterfield T P, Sharrow R, Sondheim M E, Timmermann L, Tsai S, Wade L A, Wilson D W, Autonomous sensor system for determining instrument position relative to unknown surfaces utilized on mars rover, IEEE Sens J, 22(2022)18933–18943.
  11. McComas D, Alexander N, Allegrini F, Bagenal F, Beebe C, Clark G, Crary F, Desai M, Santos A D L, Demkee D, Dickinson D, Everett D, Finley T, Gribanova A, Hill R, Johnson J, Kofoed C, Loeffler C, Louarn P, Maple M, Mills W, Pollock C, Reno M, Rodriguez B, Rouzaud J, Santos-Costa D, Valek P, Weidner S, Wilson P, Wilson R J, White D, The jovian auroral distributions experiment (JADE) on the juno mission to jupiter, Space Sci Rev, 213(2017)547–643.
  12. Case A W, Kasper J C, Stevens M L, Korreck K E, Paulson K, Daigneau P, Caldwell D, Freeman M, Henry T, Klingensmith B, Bookbinder J A, Robinson M, Berg P, Tiu C, Wright K H, Reinhart M J, Curtis D, Ludlam M, Larson D, Whittlesey P, Livi R, Klein K G, Martinovic M M, The solar probe cup on the parker solar probe, ´ ApJS, 246(2020)43; doi.org/10.3847/1538-4365/ab5a7b.
  13. Case A W, Kasper J C, Stevens M L, Korreck K E, Paulson K, Daigneau P, Caldwell D, Freeman M, Henry T, Klingensmith B, Bookbinder J A, Robinson M, Berg P, Tiu C, Wright K H (Jr), Reinhart M J, Curtis D, Ludlam M, Larson D, Whittlesey P, Livi R, Klein K G, Martinović M M, The solar probe cup on the parker solar probe, ApJS, 246(2020)43; doi.10.3847/1538-4365/ab5a7b.
  14. Brinckerhoff W B, Pinnick V T, van Amerom F H W, Danell R M, Arevalo R D, Atanassova M S, Li X, Mahaffy P R, Cotter R J, Goesmann F, Steininger H, Mars organic molecule analyzer (moma) mass spectrometer for exomars 2018 and beyond, 2013 IEEE Aerospace Conference, 2013, pp 1–8.
  15. Owen C, Bruno R, Livi S, Louarn P, Janabi K A, Allegrini F, Amoros C, Baruah R, Barthe A, Berthomier M, Bordon S, Brockley-Blatt C,  Brysbaert C, Capuano G, Collier M, DeMarco R, Fedorov A,  Ford J,  Fortunato V,  Fratter I,  Galvin A B,  Hancock B,  Heirtzler D,  Kataria D,  Kistler L, Lepri S T, Lewis G, Loeffler C, Marty W, Mathon R, Mayall A, Mele G,  Ogasawara K, Orlandi M, Pacros A, Penou E, Persyn S, Petiot M, Phillips M,  Přech L, RainesJ M, Reden M, Rouillard A P, Rousseau A, Rubiella J, Seran H, Spencer A, Thomas J W, Trevino J, Verscharen D, Wurz P, Alapide A, Amoruso L, André N, Anekallu C, Arciuli V, Arnett K L, Ascolese R, Bancroft C, Bland P, Brysch M, Calvanese R, Castronuovo M, Čermák I, Chornay D, Clemens S, Coker J, Collinson G, D’Amicis R, Dandouras I, Darnley R, Davies D, Davison G, Santos A D L, Devoto P, Dirks G, Edlund E, Fazakerley A, Ferris M, Frost C, Fruit G, Garat C, Génot V, Gibson W, Gilbert J A, de Giosa V, Gradone S, Hailey M, Horbury T S, Hunt T, Jacquey C, Johnson M, Lavraud B, Lawrenson A, Leblanc F, Lockhart W,  Maksimovic M, Malpus A, Marcucci F, Mazelle C, Monti F, Myers S, Nguyen T, Rodriguez-Pacheco J, Phillips I, Popecki M, Rees K, Rogacki S A, Ruane K, Rust D, Salatti M, Sauvaud J A, Stakhiv M O, Stange J, Stubbs T, Taylor T, Techer J.-D, Terrier G, Thibodeaux R, Urdiales C, Varsani A, Walsh A P, Watson G, Wheeler P, Willis G, Wimmer-Schweingruber R F, Winter B, Yardley J, Zouganelis I, The solar orbiter solar wind analyser (swa) suite, Astron Astrophys, 642(2020)A16; doi.org/10.1051/0004-6361/201937259.
  16. Bijeev N, Malhotra A, Kumar V, Singh S, Dasgupta K, Motta R N, Venugopal B, Jinan O, Jayakumar B, Design and realization challenges of power supplies for space twt, 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011, pp 431–432.
  17. Chen Y, Wang G, Su X, Design of high voltage power converter for traveling wave tube amplifier, J Electronics (China), 31(2014)587–596.
  18. Sutton J F, Stern J E, Spacecraft high-voltage power supply construction, Tech Rep, National Aeronautics and Space Administration, (Washington, D C), April 1975.
  19. Bever R S, Ruitberg A P, Kellenbenz C W, Irish S M, High voltage power supply design guide for space, Tech Rep, (Rept-2005-02566-0, NASA/TP-2006-214133), 2006.
  20. Satav S M, Sarma V R, Mil-std-461 f – a study report, in 2008 10th International Conference on Electromagnetic Interference Compatibility, 2008, pp 559–563.
  21. Mazzola S, Mil-std-461: The basic military emc specification and it’s evolution over the years, in 2009 IEEE Long Island Systems, Applications and Technology Conference, IEEE, 2009, pp 1–5.