Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1355-1364

Realizing singular beams through dual-pass phase modulation

Praveen Kumar and Naveen K Nishchal


Abstract

Singular optics has become a widely researched area because of many applications of optical vortices and the orbital angular momentum. In optics, singularity emerges in connection with optical fields with spatial inhomogeneity. For this reason, the concept of light beam shaping occupies a prominent position in singular optics. One of the important aspects of current research is the efficient technique to realize vector fields of light having structured polarization. This paper describes the dual-pass phase modulation technique for generating vector fields having phase and polarization singularities. Simulation and experimental results of singular beams have been presented. © Anita Publications. All rights reserved.
Keywords: Optical vortices, Vector-vortex beams, Optical singularity, Spatial light modulator, Polarization.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzmán C, Belmonte A, Torres J P, Neely T W, Baker m, Gordon R, Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, McMorran B, Weiner A M, Roadmap on structured light, J Opt, 19(2017)013001; doi.org/10.1088/2040-8978/19/1/013001.
  2. Andrews D L, Structured Light and Its Applications, (Elsevier) 2008.
  3. Angelsky O V, Bekshaev A Y, Hanson S G, Zenkova C Y, Mokhun II, Jun Z, Structured light: Ideas and concepts, Front Phys, 8(2020)114; doi.org/10.3389/fphy.2020.00114.
  4. Dennis M R, O’Holleran K, Padgett M J, Singular optics: Optical vortices and polarization singularities, Progr Opt, 53(2009)293–363.
  5. Soskin M S, Vasnetsov M V, Singular optics, Progr Opt, 42(2001)219–276.
  6. Nye J F, Berry M V, Dislocations in wave trains, Proc R Soc London A, 336(1974)165–190.
  7. Coullet P, Gil L, Rocca F, Optical vortices, Opt Commun, 73(1989)403–408.
  8. Prati F, Tissoni G, San Miguel M, Abraham N B, Vector vortices and polarization state of low-order transverse modes in a VCSEL, Opt Commun, 143(1997)133–146.
  9. Vasnetsov M V, Staliunas K, Optical Vortices, (Nova Science Publ.), 1999.
  10. Kotlyar V V, Kovalev A A, Porfirev A P, Vortex Laser Beams, (CRC Press) 2018; doi.org/10.1201/9781351009607.
  11. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci Appl, 8(2019)90; doi.org/10.1038/s41377-019-0194-2.
  12. Allen L, Barnett S M, Padgett M J (Eds), Optical Angular Momentum, (IOP Publ. UK), 2003.
  13. Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys Rev A, 45(1992)8185–8189.
  14. Yao A M, Padgett M J, Orbital angular momentum: origins, behavior and applications, Adv Opt Photon, 3(2011)161–204.
  15. Torner L, Torres J P, Twisted Photons, (Wiley Publ.), 2011.
  16. Andrew D L, Babiker M, The Angular Momentum of Light, (Cambridge University Press), 2013.
  17. Padgett M J, Orbital angular momentum 25 years on, Opt Express, 25(2017)11265–11274.
  18. Dholakia K, Čižmár T, Shaping the future of manipulation, Nat Photon, 5(2011)335–342.
  19. Wang J, Advances in communications using optical vortices, Photon Res, 4(2016)B14–B28.
  20. Rosales-Guzmán C, Hermosa N, Belmonte A, Torres J P, Experimental detection of transverse particle movement with structured light, Sci Rep, 3(2013)2815; doi/org/10.1038/srep02815.
  21. Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M, Spiral phase contrast imaging in microscopy, Opt Express, 13(2005)689–694.
  22. Marrucci L, Manzo C, Paparo D, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys Rev Lett, 96(2006)163905; doi.org/10.1103/PhysRevLett.96.163905
  23. Molina-Terriza G, Torres J P, Torner L, Twisted photons, Nat Phys, 3(2007)305–310.
  24. Gbur G, Singular Optics-The Optics Encyclopedia, (Wiley Publ.), 2015.
  25. Soskin M S, Boriskina S V, Chong Y, Dennis M R, Desyatnikov A, Singular optics and topological photonics, J Opt, 19(2017)010401; doi.org/10.1088/2040-8986/19/1/010401.
  26. Gbur G J, Singular Optics, (CRC Press), 2017.
  27. Senthilkumaran P, Singularities in Physics and Engineering, (IOP Publ. UK), 2018.
  28. Kumar P, Nishchal N K, Singh K, Role of self-referenced interferometry in measuring the orbital angular momentum of optical vortices: A review, Asian J Phys, 29(2020)835-852.
  29. Pachava S, Dharmavarapu R, Vijayakumar A, Jayakumar S, Manthalkar A, Dixit A, Viswanathan N K, Srinivasan B, Shanti Bhattacharya S, Generation and decomposition of scalar and vector modes carrying orbital angular momentum: a review, Opt Eng, 59(2019)041205; doi.org/10.1117/1.OE.59.4.041205.
  30. Kumar P, Nishchal N K, Array formation of optical vortices using in-line phase modulation, Opt Commun, 493(2021)127020; doi.org/10.1016/j.optcom.2021.127020.
  31. García-Martínez P, Marco D, Martínez-Fuentes J L, Sánchez-López M M, Moreno I, Efficient on-axis SLM engineering of optical vector modes, Opt Lasers Eng, 125(2020)105859; doi.org/10.1016/j.optlaseng.2019.105859.
  32. Kumar P, Pal S K, Nishchal N K, Senthilkumaran P, Formation of polarization singularity lattice through dual-phase modulation, J Opt, 22(2020)115701; doi.org/10.1088/2040-8986/abbb5d.
  33. Kumar P, Pal S K, Nishchal N K, Senthilkumaran P, Non-interferometric technique to realize vector beams embedded with polarization singularities, J Opt Soc Am A, 37(2020)1043–1052.
  34. Wu D, Li Y, Jia W, Zhou J, Zhao Y, Fu Y, Wang J, Generation of arbitrary vector vortex beams based on the dual-modulation method, Appl Opt, 58(2019)1508–1513.
  35. Bazhenov V Y, Vasnetsov M V, Soskin M S, Laser beams with screw dislocations in their wavefronts, JETP Lett, 52(1990)152–154.
  36. Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T, Heckenberg N R, Topological charge and angular momentum of light beams carrying optical vortices, Phys Rev A, 59(1997)4064–4075.
  37. O’Holleran K, Padgett M J, Dennis M R, Topology of optical vortex lines formed by the interference of three, four, and five plane waves, Opt Express, 14(2006)3039–3044.
  38. Mokhun A I, Soskin M S, Freund I, Elliptic critical points: C-points, a-lines, and the sign rule, Opt Lett, 27(2002)995–997.
  39. Dennis M R, Polarization singularities in paraxial vector fields: morphology and statistics, Opt Commun, 213(2002)201–221.
  40. Freund I, Polarization flowers, Opt Commun, 199(2001)47–63.
  41. Lu T H, Chen Y F, Huang K F, Generalized hyperboloid structures of polarization singularities in Laguerre-Gaussian vector fields, Phys Rev A, 76(2007)063809; doi.org/10.1103/PhysRevA.76.063809.
  42. Vyas S, Kozawa Y, Sato S, Polarization singularities in superposition of vector beams, Opt Express, 21(2013)8972; org/10.1364/OE.21.008972.
  43. Kumar P, Nishchal N K, Modified Mach–Zehnder interferometer for determining the high-order topological charge of Laguerre–Gaussian vortex beams, J Opt Soc Am A, 36(2019)1447–1455.
  44. Kumar P, Nishchal N K, Self-referenced spiral interferogram using modified lateral shearing Mach–Zehnder interferometer, Appl Opt, 58(2019)6827–6833.
  45. Rosales-Guzmán C, Ndagano B, Forbes A, A review of complex vector light fields and their applications, J Opt, 20(2018)123001; doi.org/10.1088/2040-8986/aaeb7d.
  46. Zhan Q, Cylindrical vector beams: from mathematical concepts to applications, Adv Opt Photon, 1(2009)1–57.
  47. Beckley A M, Brown T G, Alonso M A, Full Poincaré beams, Opt Express, 18(2010)10777–10785.
  48. Ruchi, Senthilkumaran P, Pal S K, Phase singularities to polarization singularities, Int J Opt, 2020(2020)1–33.
  49. Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B, Recent advances on optical vortex generation, Nanophoton, 7(2018)1533–1556.
  50. Forbes A, Dudley A, McLaren M, Creation and detection of optical modes with spatial light modulators, Adv Opt Photon, 8(2016)200–227.
  51. Kumar P, Fatima A, Nishchal N K, Arbitrary vector beam encoding using single modulation for information security applications, IEEE Photon Technol Lett, 33(2021)243–246.
  52. Nishchal N K, Optical Cryptosystems, (IOP Publ), 2019.
  53. Zhang Y, Li P, Ma C, Liu S, Cheng H, Han L, Zhao J, Efficient generation of vector beams by calibrating the phase response of a spatial light modulator, Appl Opt, 56(2017)4956–4960.
  54. Kumar P, Nishchal N K, Formation of singular light fields using phase calibrated spatial light modulator, Opt Lasers Eng, 146(2021)106720; doi.org/10.1016/j.optlaseng.2021.106720.
  55. Gupta A K, Kumar P, Nishchal N K, Alfalou A, Polarization-encoded fully-phase encryption using transport of intensity equation, MDPI Electronics, 10(2021)00969; doi.org/10.3390/electronics10080969.
  56. Fatima A, Nishchal N K, Image authentication using vector beam with sparse phase information, J Opt Soc Am A, 35(2018)1053–1062.