Asian Journal of Physics Vol. 33, Nos 3 & 4 (2024) 169-183

Scanning near-field optical microscopy

N Granchi, F Intonti and M Gurioli
Department of Physics, University of Florence, I-50019 Sesto Fiorentino, FI, Italy

Dedicated to Professor Anna Consortini for her significant contributions and pioneering works in the field of atmospheric turbulence and her continuous commitment to promote optics at global level 


This review is focused on the use of SNOM in nanophotonics research, and in particular on its exploitation in the investigation of optical properties and detection of local electromagnetic fields with subwavelength resolution © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.3-4.2024.169-183
Keywords: Near-field, Photonic crystal cavities, Non-Hermitian photonics, Hyperuniform, Mie resonators


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Synge E, A suggested method for extending microscopic resolution into the ultra-microscopic region, Philos Mag, 6(1928)356–362.
  2. Bethe H, Theory of Diffraction by Small Holes, Phys Rev, 66(1944)163–182.
  3. Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L, Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale, Science, 251(1991)1468–1470.
  4. Joannopoulos J D, Meade R, Winn J, Photonic Crystals, (Princeton University Press, Princeton, N J), 1995.
  5. Tanabe T, Notomi M, Kuramochi E, Shinya, Taniyama H, Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity, Nat Photonics, 1(2007)49–52.
  6. Koenderink A F, Kafesaki M, Buchler B C, Sandoghdar V, Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe, Phys Rev Lett, 95(2005)153904; doi.org/10.1103/PhysRevLett.95.153904.
  7. Intonti F, Vignolini S, Riboli F, Vinattieri A, Wiersma D S, Colocci M, Balet L, Monat C, Zinoni, Li L H, Houdré R, Francardi M, Gerardino A, Fiore A, Gurioli M, Spectral tuning and near-field imaging of photonic crystal microcavities, Phys Rev B, 78(2008)041401(R); doi.org/10.1103/PhysRevB.78.041401.
  8. Louvion N, Gérard D, Mouette J, de Fornel F, Seassal C, Letartre X, Rahmani A, Callard S, Local Observation and Spectroscopy of Optical Modes in an Active Photonic-Crystal Microcavity, Phys Rev Lett, 94(2005)113907; doi.org/10.1103/PhysRevLett.94.113907.
  9. Kramper P, Kafesaki M, Soukoulis C M, Birner A, Müller F, Gösele U, Wehrspohn R B, Mlynek J, Sandoghdar V, Near-field visualization of light confinement in a photonic crystal microresonator, Opt Lett, 29(2004)174–176.
  10. Volkov V S, Bozhevolnyi S I, Borel P I, Frandsen L H, Kristensen M, Near-field characterization of low-loss photonic crystal waveguides, Phys Rev B, 72(2005)035118.
  11. Vignolini S, Intonti F, Riboli F, Balet L, Li L H, Francardi M, Gerardino A, Fiore A, Wiersma D S, Gurioli M, Magnetic Imaging in Photonic Crystal Microcavities, Phys Rev Lett, 105(2010)123902; doi. org/10.1103/PhysRevLett.105.123902.
  12. Devaux E, Dereux A, Bourillot E, Weeber J C, Lacroute Y, Goudonnet J P, Girard C, Local detection of the optical magnetic field in the near zone of dielectric samples, Phys Rev B, 62(2000)10504; doi. doi.org/10.1103/PhysRevB.62.10504.
  13. Burresi M, Van Oosten D, Kamprfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipersm L, Probing the Magnetic Field of Light at Optical Frequencies, Science, 326(2006)550–553.
  14. Krause A G, Winger M, Blasius T D, Lin Q, Painter O, A high-resolution microchip optomechanical accelerometer, Nat Photon, 6(2012)768–772.
  15. Liu F, Alaie S, Leseman Z C, Hossein-Zadeh M, Sub-pg mass sensing and measurement with an optomechanical oscillator, Opt Express, 21(2013)19555–19567.
  16. Faraon A, Vučković J, Local temperature control of photonic crystal devices via micron-scale electrical heaters, Appl Phys Lett, 95(2009)043102; doi.org/10.1063/1.3189081.
  17. Intonti F, Vignolini S, Riboli F, Zani M, Wiersma D S, Balet L, Li L H, Francardi M, Gerardino A, Fiore A, Gurioli M, Tuning of photonic crystal cavities by controlled removal of locally infiltrated water, Appl Phys Lett, 95(2009)173112; doi. doi.org/10.1063/1.3247894.
  18. Intonti F, Caselli N, Vignolini S, Riboli F, Kumar S, Rastelli A, Schmidt O G, Francardi M, Gerardino A, Balet L, Li H L, Fiore A, Gurioli M, Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation, Appl Phys Lett, 100(2012)033116; doi. doi.org/10.1063/1.3678036.
  19. Suh W, Yanik M F, Solgaard O, Fan S, Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs, Appl Phys Lett, 82(2003)1999–2001.
  20. Midolo L, van Veldhoven P J, Dundar M A, Notzel R, Fiore A, Electromechanical wavelength tuning of double-membrane photonic crystal cavities, Appl Phys Lett, 98(2011)211120; doi.org/10.1063/1.3593963.
  21. Granchi N, Petruzzella M, Balestri D, Fiore A, Gurioli M, Intonti F, Multimode photonic molecules for advanced force sensing, Opt Express, 27(2019)37579–37589.
  22. Petruzzella M, La China F, Intonti F, Caselli N, De Pas M, van Otten F W M, Gurioli M, Fiore A, Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules, Phys Rev B, 94(2016)115413; doi. org/10.1103/PhysRevB.94.115413.
  23. Balestri D, Petruzzella M, Checcucci S, Intonti F, Caselli N, Sgrignuoli F, van Otten F. W. M., Fiore A., Gurioli M, Adv Mater, 31(2019)1807274; doi. org/10.1002/adma.201807274.
  24. Haus H A, Huang W P, Kawakami S, and Whitaker N A, Coupled-mode theory of optical waveguides, J Lightwave Technol, 5(1987)16–23.
  25. Midolo L, Pagliano F, Hoang T B, Xia T, van Otten F W M, Li L H, Linfield E H, Lermer M, Hofling S, Fiore A, Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity, Appl Phys Lett, 101(2012)091106. doi.org/10.1063/1.4748302.
  26. Vynck K, Pierrat R, Carminati R, Froufe-Pérez L S, Frank Scheffold, Sapienza R, Vignolini S, Sáenz J J, Light in correlated disordered media, arXiv:2106.13892v2.
  27. Torquato S, Stillinger F H, Local density fluctuations, hyperuniformity, and order metrics, Phys Rev E, 68(2003)041113; doi.org/10.1103/PhysRevE.68.041113.
  28. Florescu M, Torquato S, Steinhardt P J, Designer disordered materials with large, complete photonic band gaps, PNAS, 106(2009)20658–20663.
  29. Muller N, Haberko J, Marichy C, Scheffold F, Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared, Adv Opt Mater, 2(2014)115–119.
  30. Castro-Lopez M, Gaio M, Sellers S, Gkantzounis G, Florescu M, Sapienza R, Reciprocal space engineering with hyperuniform gold disordered surfaces, APL Photonics, 2(2017)061302; doi.org/10.1063/1.4983990.
  31. Aubry G J, Froufe-Pérez L S, Kuhl U, Legrand O, Scheffold F, Mortessagne F, Phys Rev Lett, 125(2020)127402; doi.org/10.1103/PhysRevLett.125.127402.
  32. Granchi N, Spalding R, Lodde M, Petruzzella M, W Otten F, Fiore A, Intonti F, Sapienza R, Florescu M, Gurioli M, Near-Field Investigation of Luminescent Hyperuniform Disordered Materials, Adv Opt Mat, (2022)2102565; doi.org/10.1002/adom.202102565.
  33. Granchi N, Lodde M, Stokkereit K, Spalding R, van Veldhoven P J, Sapienza R, Fiore A, Gurioli M, Florescu M, Intonti F, Near-field imaging of optical nanocavities in hyperuniform disordered materials, Phys Rev B, 107(2023) 064204; doi. org/10.1103/PhysRevB.107.064204.
  34. Granchi N, Spalding R, Stokkereit K, Lodde M, Petruzzella M, W. Otten F, Fiore A, Sapienza R, Florescu M, Intonti F, High spatial resolution imaging of light localization in hyperuniform disordered patterns of circular air pores in a dielectric slab, Front Photon, 4(2023)1199411; doi. org/10.3389/fphot.2023.1199411.
  35. Imagawa S, Edagawa K, Morita K, Niino T, Kagawa Y, Notomi M, Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures, Phys Rev B, 82(2010)115116; doi.org/10.1103/PhysRevB.82.115116.
  36. Yuan T, Feng T, Xu T, Manipulation of transmission by engineered disorder in one-dimensional photonic crystals, Opt Express, 27(2019)6483–6494.
  37. Sauvan C, Hugonin J P, Maksymov I S, Lalanne P, Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators, Phys Rev Lett, 110(2013)237401; doi.                org/10.1103/PhysRevLett.110.237401.
  38. Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin J P, Light Interaction with Photonic and Plasmonic Resonances, Laser Photonics Rev, 12(2018)1700113; doi.org/10.1002/lpor.201700113.
  39. Carminati R, Cazé A, Cao D, Peragut F, Krachmalnicoff V, Pierrat R, De Wilde R, Electromagnetic density of states in complex plasmonic systems, Surf Sci Rep, 70(2015)1–41.
  40. Purcell E M, Torrey H C, Pound R V, Resonance Absorption by Nuclear Magnetic Moments in a Solid, Phys Rev, 69(1946)37; doi. org/10.1103/PhysRev.69.37.
  41. Akahane Y, Asano T, Song B S, Noda S, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 425(2003)944–947.
  42. Sekoguchi H, Takahashi Y, Asano T, Noda S, Photonic crystal nanocavity with a Q-factor of 9 million, Opt Express, 22(2014)916–924.
  43. Granchi N, Intonti F, Florescu M, García P D, Gurioli M, Arregui G, Q‑Factor Optimization of Modes in Ordered and Disordered Photonic Systems Using Non-Hermitian Perturbation Theory, ACS Photonics, 10(2023)2808–2815.
  44. Cognée K G, Yan W, La China F, Balestri D, Intonti F, Gurioli M, Koenderink A F, Lalanne P, Mapping complex mode volumes with cavity perturbation theory, Optica, 6(2019)269–273.
  45. Bethe H A, Schwinger J, Perturbation theory for cavities, N D R C Rpt D1‐117, (Cornell University), 1943.
  46. Lalouat L, Cluzel B, Velha P, Picard E, Peyrade D, Hugonin J P, Lalanne P, Hadji E, De Fornel F, Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity, Phys Rev B, 76(2007)041102; doi. org/10.1103/PhysRevB.76.041102.
  47. Mujumdar S, Koenderink A F, Sünner T, Buchler B C, Kamp M, Forchel A, Sandoghdar A, Near-field imagingand frequency tuning of a high-Q photonic crystal membrane microcavity, Opt Express, 15(2007)17214–17220.
  48. Pellegrino D, Balestri D, Granchi N, Ciardi M, Intonti F, Pagliano F, Silov A Y, W. Otten F, Wu T, Vynck K, Lalanne P, Fiore A, Gurioli M, Non-Lorentzian Local Density of States in Coupled Photonic Crystal Cavities Probed by Near- and Far-Field Emission, Phys Rev Lett, 124(2020)123902; doi.org/10.1103/PhysRevLett.124.123902.
  49. Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B, Optically resonant dielectric nanostructures, Science, 354(2016)6314; doi. 10.1126/science.aag2472.
  50. Hancu I M, Curto A G, Castro-López M, Kuttge M, van Hulst N, Multipolar interference for directed light emission, Nano Lett, 14(2014)166–171.
  51. Tognazzi A, Okhlopkov K I, Zilli A, Rocco D, Fagiani L, Mafakheri E, Bollani M, Finazzi M, Celebrano M, Shcherbakov M R, Fedyanin A , De Angelis C, Third-harmonic light polarization control in magnetically resonant silicon metasurfaces, Opt Express,29(2021)11605–11612.
  52. Alhalaby H, Zaraket H, Principe M, Enhanced photoluminescence with dielectric nanostructures: A review, Results Opt, 3(2021)100073; doi.org/10.1016/j.rio.2021.100073.
  53. Todisco F, Malureanu R, Wolff C, Gonçalves P A D, Roberts A S, Mortensen N A, and Tserkezis C, Magnetic and electric Mie-exciton polaritons in silicon nanodisks, Nanophotonics, 9(2020)803–814.
  54. Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett, 12(2012)3749–3755.
  55. Kuznetsov A I, Miroshnichenko A E, Fu Y H, Zhang J, Lukyanchukl B, Magnetic light, Sci Rep, 2(2012)1–6.
  56. Coenen T, Van de Groep J, Polman A, Resonant modes of single silicon nanocavities excited by electron irradiation, ACS Nano, 7(2013)1689–1698.
  57. Habteyes T G, Staude I, Chong K E, Dominguez J, Decker M, Miroshnichenko A, Kivshar Y, Brener I, Near-field mapping of optical modes on all-dielectric silicon nanodisks, ACS Photonics, 1(2014)794–798.
  58. Granchi N, Montanari M, Ristori A, Khoury M, Bouabdellaoui M, Barri C, Fagiani L, Gurioli M, Bollani M, Abbarchi M, Intonti F, Near-field hyper-spectral imaging of resonant Mie modes in a dielectric island, APL Photonics, 6(2021)126102; doi. org/10.1063/5.0070626.
  59. Thompson C V, Solid-state dewetting of thin films, Annu Rev Mater Res, 42(2012)399–434.
  60. Toliopoulos D, Khoury M, Bouabdellaoui M, Granchi N, Claude J B, Benali A, Berbezier I, Hannani D, Ronda A, Wenger J, Bollani M, Gurioli M, Sanguinetti S, Intonti F, Abbarchi M, Fabrication of spectrally sharp Si-based dielectric resonators: Combining etaloning with Mie resonances, Opt Express, 28(2020)37734–37742.
  61. Abbarchi M, Naffouti M, Vial B, Benkouider A, Lermusiaux L, Favre L, Ronda A, Bidault S, Berbezier I, Bonod N, Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting, ACS Nano, 8(2014)11181–11190.
  62. Granchi N, Fagiani L, Salvalaglio M, Barri C, Ristori A, Montanari M, Gurioli M, Abbarchi M, Voigt A, Vincenti M A, Intonti F, Bollani M, Engineering and detection of light scattering directionalities in dewetted nanoresonators through dark-field scanning microscopy, Opt Express, 31(2023)9007–9017.
  63. Van de Groep J, Polman A, Designing dielectric resonators on substrates: Combining magnetic and electric resonances, Opt Express, 21(2013)26285–26302.