Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) 369-383

Types of structured light beams and their applications in optical cryptography: A review

Allarakha Shikder1, Praveen Kumar2, Naveen K Nishchal3 and Kehar Singh4
1,3Department of Physics, Indian Institute of Technology Patna, Patna-801 106, Bihar, India
2Department of Physics, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492 015, India
4Optics and Photonics Center, Indian Institute of Technology Delhi, New Delhi-110 016, India
Dedicated in memory of Prof John Sheridan


Structured light beams have custom-shaped spatial amplitude, phase, and polarization distributions. Generation of various types of the structured beams is possible, depending on the spatial beam profile. Such beams have found attractive applications in science and technology owing to their unique properties resulting from inhomogeneous beam shaping. This paper reviews different types of structured light beams, with numerical simulation, and their recently emerged applications. The applications of structured beams in optical information security have been discussed and simulation results have been presented. The study would be beneficial for new researchers in this emerging area of ‘Structured light’ © Anita Publications. All rights reserved.
Keywords: Structured light beams, Vortex beams, Optical angular momentum, Optical singularity, Polarization.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Forbes A, Structured light from lasers, Laser Photon Rev, 13(2019)1970043; doi.org/10.1002/lpor.201900140.
  2. Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzmán C, Belmonte A, Torres J P, Neely T W, Baker M, Gordon R, Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, McMorran B, Weiner A M, Roadmap on structured light, J Opt, 19(2017)013001; 10.1088/2040-8978/19/1/013001.
  3. Forbes A, Structured light: tailored for purpose, Opt Photon News, 31(2020)24–31.
  4. Kumar P, Nishchal N K, Formation of singular light fields using phase calibrated spatial light modulator, Opt Lasers Eng, 146(2021)106720; doi.org/10.1016/j.optlaseng.2021.106720.
  5. Dennis M R, O’holleran K, Padgett M J, Singular optics: optical vortices and polarization singularities, Progr Opt, 53(2009)293–363.
  6. Allen L, Barnett S M, Padgett M J, (Eds), Optical Angular Momentum, (CRC Press), 2003.
  7. Marrucci L, Manzo C, Paparo D, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys Rev Lett, 96(2006)163905; doi.org/10.1103/PhysRevLett.96.163905.
  8. Molina-Terriza G, Torres J P, Torner L, Twisted photons, Nat Phys, 3(2007)305–310.
  9. Wang J, Advances in communications using optical vortices, Photon Res, 4(2016)B14–B28.
  10. Dholakia K, Čižmár T, Shaping the future of manipulation, Nat Photon, 5(2011)335–342.
  11. Rosales-Guzmán C, Hermosa N, Belmonte A, Torres J P, Experimental detection of transverse particle movement with structured light, Sci Rep, 3(2013)2815; doi.org/10.1038/srep02815.
  12. Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M, Spiral phase contrast imaging in microscopy, Opt Express, 13(2005)689–694.
  13. Poynting J H, The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light, Proc R Soc London A, 82(1909)560–567.
  14. Beth R A, Mechanical detection and measurement of the angular momentum of light, Phys Rev, 50(1936)115–125.
  15. Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys Rev A, 45(1992)8185–8189.
  16. Nye J F, Berry M V, Dislocations in wave trains, Proc R Soc London A, 336(1974)165–190.
  17. Franke‐Arnold S, Allen L, Padgett M J L, Reviews P, Advances in optical angular momentum, Laser Photon Rev, 2(2008)299–313.
  18. Barnett S M, Babiker M, Padgett M J, Optical orbital angular momentum, Philos Trans R Soc A, 375(2017)20150444; doi.org/10.1098/rsta.2015.0444.
  19. Yao A M, Padgett M J, Orbital angular momentum: origins, behavior and applications, Adv Opt Photon, 3(2011)161–204.
  20. He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H, Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity, Phys Rev Lett, 75(1995)826–829.
  21. Rosales-Guzmán C, Ndagano B, Forbes A, A review of complex vector light fields and their applications, J Opt , 20(2018)123001; doi. 10.1088/2040-8986/aaeb7d.
  22. Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M, Spiral interferometry, Opt Lett, 30(2005)1953–1955.
  23. Ritsch-Marte M, Orbital angular momentum light in microscopy, Phil Trans R Soc A, 375(2017)20150437; doi.org/10.1098/rsta.2015.0437.
  24. Chanu S R, Natarajan V, Narrowing of resonances in electromagnetically induced transparency and absorption using a Laguerre-Gaussian control beam, Opt Commun, 295(2013)150–154.
  25. Anupriya J, Ram N, Pattabiraman M, Hanle electromagnetically induced transparency and absorption resonances with a Laguerre-Gaussian beam, Phys Rev A, 81(2010)043804; doi.org/10.1103/PhysRevA.81.043804.
  26. Singh M, Atieh A, Grover A, Barukab O, Performance analysis of 40 Gb/s free space optics transmission based on orbital angular momentum multiplexed beams, Alex Eng J, 61(2022)5203–5212.
  27. Gröblacher S, Jennewein T, Vaziri A, Weihs G, Zeilinger A, Experimental quantum cryptography with qutrits, New J Phys, 8(2006)75; 10.1088/1367-2630/8/5/075.
  28. Mirhosseini M, Magaña-Loaiza O S, O’Sullivan M N, Rodenburg B, Malik M, Lavery M P J, Padgett M J, Gauthier D J, Boyd R W, High-dimensional quantum cryptography with twisted light, New J Phys, 17(2015)033033; doi.1 0.1088/1367-2630/17/3/033033.
  29. Fang X, Ren H, Gu M, Orbital angular momentum holography for high-security encryption, Nat Photon, 14(2020)102–108.
  30. Ruffato G, Rossi R, Massari M, Mafakheri E, Capaldo P, Romanato F, Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders, Sci Rep, 7(2017)18011; doi.org/10.1038/s41598-017-18147-7.
  31. Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V, Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator, Opt Lett, 38(2013)534–536.
  32. Kotlyar V V, Kovalev A A, Topological charge of asymmetric optical vortices, Opt Express, 28(2020)20449–20460.
  33. Kotlyar V V, Kovalev A A, Family of hypergeometric laser beams, J Opt Soc Am A, 25(2008)262–270.
  34. Bernardo B D L, Moraes F, Data transmission by hypergeometric modes through a hyperbolic-index medium, Opt Express, 19(2011)11264–11270.
  35. Durnin J, Exact solutions for nondiffracting beams, I. The scalar theory, J Opt Soc Am A, 4(1987)651–654.
  36. Amako J, Sawaki D, Fujii E, Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics, J Opt Soc Am B, 20(2003)2562–2568.
  37. Ayala Y A, Arzola A V, Volke-Sepúlveda K, Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams, J Opt Soc Am B, 33(2016)1060–1067.
  38. Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K, Orbital angular momentum of a high-order Bessel light beam, J Opt B: Quantum Semiclass Opt, 4(2002)S82; 10.1088/1464-4266/4/2/373.
  39. Volke-Sepúlveda K, Chávez-Cerda S, Garcés-Chávez V, Dholakia K, Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles, J Opt Soc Am B, 21(2004)1749–1757.
  40. Chu X, Sun Q, Wang J, Lü P, Xie W, Xu X, Generating a Bessel-Gaussian beam for the application in optical engineering, Sci Rep, 5(2016)18665: doi.org/10.1038/srep18665.
  41. Mikutis M, Kudrius T, Šlekys G, Paipulas D, Juodkazis S, High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams, Opt Mater Express, 3(2013)1862–1871.
  42. Bhuyan M K, Courvoisier F, Lacourt P A, Jacquot M, Furfaro L, Withford M J, Dudley J M, High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams, Opt Express, 18(2010)566–574.
  43. Yang L, El-Tamer A, Hinze U, Li J, Hu Y, Huang W, Chu J, Chichkov B N, Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams, Appl Phys Lett, 105(2014)041110; doi.org/10.1063/1.4891841.
  44. Li S, Wang J, Adaptive free-space optical communications through turbulence using self-healing Bessel beams, Sci Rep, 7(2017)43233; doi.org/10.1038/srep43233.
  45. Bouchal Z, Nondiffracting optical beams: physical properties, experiments, and applications, Czechoslovak J Phys, 53(2003)537–578.
  46. Lorenser D, Singe C C, Curatolo A, Sampson D D, Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography, Opt Lett, 39(2014)548–551.
  47. Yi L, Sun L, Ding W, Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth, J Biomed Opt, 22(2017)106016; doi.org/10.1117/1.JBO.22.10.106016.
  48. Yin B, Hyun C, Gardecki J A, Tearney G J, Extended depth of focus for coherence-based cellular imaging, Optica, 4(2017)959–965.
  49. Berry M V, Balazs N L, Nonspreading wave packets, Am J Phys 47(1979)264–267.
  50. Siviloglou G A, Broky J, Dogariu A, Christodoulides D N, Observation of accelerating Airy beams, Phys Rev Lett, 99(2007)213901; doi.org/10.1103/PhysRevLett.99.213901.
  51. Lu W, Chen J, Lin Z, LiuS, Driving a dielectric cylindrical particle with a one- dimensional Airy beam: a rigorous full wave solution, Prog Electromagn Res, 115(2011)409–422.
  52. Mitri F G, Airy acoustical-sheet spinner tweezers, J Appl Phys, 120(2016)104901; doi.org/10.1063/1.4962397.
  53. Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Čižmár T, Gunn-Moore F J, Dholakia K, Light-sheet microscopy using an Airy beam, Nat Methods, 11(2014)541–544.
  54. Baumgartl J, Mazilu M, Dholakia K, Optically mediated particle clearing using Airy wavepackets, Nat Photon, 2(2008)675–678.
  55. Piksarv P, Marti P D, Le T, Unterhuber A, Forbes L H, Andrews M R, Stingl A, Drexler W, Andersen P E, Dholakia K, Integrated single- and two-photon light sheet microscopy using accelerating beams, Sci Rep, 7(2017)1435; doi.org/10.1038/s41598-017-01543-4.
  56. Efremidis N K, Christodoulides D N, Abruptly autofocusing waves, Opt Lett, 35(2010)4045–4047.
  57. Siviloglou G A, Christodoulides D N, Accelerating finite energy Airy beams, Opt Lett, 32(2007)979–981.
  58. Kogelnik H, Li T, Laser beams and resonators, Appl Opt, 5(1966)1550–1567.
  59. Aguirre-Olivas D, Mellado-Villaseñor G, Sánchez-de-la-Llave D, Arrizón V, Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements, Appl Opt, 54(2015)8444–8452.
  60. Kotlyar V V, Kovalev A A, Soifer V A, Transformation of decelerating laser beams into accelerating ones, J Opt, 16(2014)085701; doi. 10.1088/2040-8978/16/8/085701.
  61. Huang C, Lu H, Accelerating propagation properties of misplaced Hermite-Gaussian beams, J Opt Soc Am A 31(2014)1762–1765.
  62. Huang C, Li H, Wu J, Yan Y, Hyperbolic accelerating beams and their relation with Hermite–Gaussian beams, J Opt Soc Am A, 35(2018)262–266.
  63. Fan X, Ji X, Wang H, Deng Y, Zhang H, Self-focusing effect on the beam quality of Hermite-Gaussian beams propagating upwards through the inhomogeneous atmosphere, J Opt Soc Am A, 38(2021)168–173.
  64. Xu Z, Liu X, Chen Y, Wang F, Liu L, Monfared Y E, Ponomarenko S A, Cai Y, Liang C, Self-healing properties of Hermite-Gaussian correlated Schell-model beams, Opt Express, 28(2020)2828–2837.
  65. Bandres M A, Gutiérrez-Vega J C, Ince-Gaussian beams, Opt Lett, 29(2004)144–146.
  66. Woerdemann M, Alpmann C, Denz C, Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams, Appl Phys Lett, 98(2011)111101; doi.org/10.1063/1.3561770.
  67. Wang M-Y, Tang J, Wang H-J, Ming Y, Zhang Y, Cui G-X, Lu Y-Q, Generation of second-harmonic Ince-Gaussian beams, Appl Phys Lett, 113(2018)081105; doi.org/10.1063/1.5041986.
  68. Zhan Q, Cylindrical vector beams: from mathematical concepts to applications, Adv Opt Photon, 1(2009)1–57.
  69. Kumar P, Pal S K, Nishchal N K, Senthilkumaran P, Non-interferometric technique to realize vector beams embedded with polarization singularities, J Opt Soc Am A, 37(2020)1043–1052.
  70. Roxworthy B J, Toussaint K C, Optical trapping with π-phase cylindrical vector beams, New J Phys, 12(2010)073012; doi.10.1088/1367-2630/12/7/073012.
  71. Dorn R, Quabis S, Leuchs G, Sharper focus for a radially polarized light beam, Phys Rev Lett, 91(2003)233901; doi.org/10.1103/PhysRevLett.91.233901.
  72. Ram B S B, Senthilkumaran P, Sharma A, Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate, Appl Opt, 56(2017)3171–3178.
  73. Kumar P, Kumar A, Joseph J, Singh K, Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions, Opt Lett, 34(2009)331–333.
  74. Nishchal N K, Optical Cryptosystems, (IoP Publs, Bristol, UK), 2019.
  75. Unnikrishnan G, Joseph J, Singh K, Optical encryption by double-random phase encoding in the fractional Fourier domain, Opt Lett, 25(2000)887–889.
  76. Chen W, Javidi B, Chen X, Advances in optical security systems, Adv Opt Photon, 6(2014)120–155.
  77. Kumar P, Fatima A, Nishchal N K, Arbitrary vector beam encoding using single modulation for information security applications, IEEE Photon Technol Lett, 33(2021)243–246.
  78. Vaity P, Singh R P, Self-healing property of optical ring lattice, Opt Lett, 36(2011)2994–2996.
  79. Khare K, Lochab P, Senthilkumaran P, Orbital Angular Momentum States of Light: Propagation through Atmospheric Turbulence, (IoP Publs, Bristol, UK), 2020.
  80. Shikder A, Kumar P, Nishchal N K, Image encryption by structured phase encoding and its effectiveness in turbulent medium, IEEE Photon Technol Lett, 35(2023)128–131.
  81. Kumar P, Nishchal N K, AlFalou A, Controllable optical vortex array for image encoding, IEEE Photon Technol Lett, 34(2022)521–524.
  82. Shikder A, Nishchal N K, Measurement of the fractional topological charge of an optical vortex beam through interference fringe dislocation, Appl Opt, 62 (2023)D58–D67.
  83. Kumar P, Nishchal N K, Modified Mach-Zehnder interferometer for determining the high-order topological charge of Laguerre-Gaussian vortex beams, J Opt Soc Am A, 36(2019)1447–1455.
  84. Kumar P, Nishchal N K, Self-referenced spiral interferogram using modified lateral shearing Mach–Zehnder interferometer, Appl Opt, 58(2019)6827–6833.
  85. Kumar P, Nishchal N K, Self-referenced interference of laterally displaced vortex beams for topological charge determination, Opt Commun, 459(2020)125000; doi.org/10.1016/j.optcom.2019.125000.
  86. Kumar P, Nishchal N K, Singh K, Role of self-referenced interferometry in measuring the orbital angular momentum of optical vortices: A review, Asian J Phys 29(2020)835–852.
  87. Pachava S, Dharmavarapu R, Vijayakumar A, Jayakumar S, Manthalkar, Dixit A, Viswanathan N K, Srinivasan B, Bhattacharya S, Generation and decomposition of scalar and vector modes carrying orbital angular momentum: a review, Opt Eng, 59(2020)041205–041205.
  88. AlFalou A, Brosseau C, Dual encryption scheme of images using polarized light, Opt Lett, 35(2010)2185–2187.
  89. Rajput S K, Nishchal N K, Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain, Appl Opt, 52(2013)4343–4352.
  90. Maluenda D, Carnicer A, Martínez-Herrero R, Juvells I, Javidi B, Optical encryption using photon-counting polarimetric imaging, Opt Express, 23(2015)655–666.
  91. Carnicer A, Juvells I, Javidi B, Martínez-Herrero R, Optical encryption in the axial domain using beams with arbitrary polarization, Opt Lasers Eng, 89(2017)145–149.
  92. Li X, Lan T-H, Tien C-H, Gu M, Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam, Nat Commun, 3(2012)998; doi.org/10.1038/ncomms2006.
  93. Lin C, Shen X, Hua B, Wang Z, Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam, Opt Commun, 352(2015)25–32.
  94. Kotlyar V V, Effect of aberration on the focusing of optical vortices and the use of vortex spatial filters in cryptography, Asian J Phys 30(2021)955–964.
  95. Fatima A, Nishchal N K, Optical image security using Stokes polarimetry of spatially variant polarized beam, Opt Commun, 417(2018)30–36.
  96. Wang Q, Xiong D, Al Falou A, Brosseau C, Optical image authentication using spatially variant polarized beam and sparse phase sampling method, Opt Lasers Eng, 124(2020)105828; doi.org/10.1016/j.optlaseng.2019.105828.
  97. Nishchal N K, Use of vector beam in image encryption; A review, Asian J Phys 30(2021)1007–1012.
  98. Kumar P, Nishchal N K, Realizing singular beams through dual-phase modulation, Asian J Phys 30(2021)1355–1364.
  99. Zhao Y, Wang J, High-base vector beam encoding/decoding for visible-light communications, Opt Lett, 40(2015)4843–4846.
  100. Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X, Segmented cylindrical vector beams for massively-encoded optical data storage, Sci Bull, 65(2020)2072–2079.
  101. Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R, Using the nonseparability of vector beams to encode information for optical communication, Opt Lett, 40(2015)4887–4890.
  102. Kolomiets E I, For the Jubilee of Professor Victor V Kotlyar, Procedia Eng, 201(2017)169–176.
  103. Kotlyar V V, Kovalev, A A, Porfirev A P, Vortex Laser Beams, (CRC Press Boca Raton FL, USA), 2019.
  104. Kotlyar V V, Kovalev A A, Nalimov A G, Topological Charge of Optical Vortices, (CRC Press, Boca Raton FL, USA), 2023.
  105. Senthilkumaran P, Singularities in Physics and Engineering, (IOP Publ. Bristol UK), 2018.
  106. Gbur G G, Singular Optics, (CRC Press, Boca Raton FL, USA), 2017.
  107. Rosales-Guzman C, Forbes A, How to Shape Light with Spatial Light Modulators, (SPIE Press Bellingham WA), 2017.
  108. Vashisth S, Singh H, Yadav A K, Singh K, Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform, Int J Opt, 2014(2014)728056; /doi.org/10.1155/2014/728056.
  109. Vashisth S, Singh H, Yadav A K, Singh K, Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval, Optik, 125(2014)5309–5315.
  110. Singh H, Yadav A K, Vashisth S, Singh K, Fully phase image encryption using double random-structured phase masks in gyrator domain, Opt, 53(2014)6472–6481.
  111. Singh H, Yadav A K, Vashisth S, Singh K, Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane, Opt Lasers Eng, 67(2015)145–156.
  112. Yadav A K, Vashisth, Singh H, Singh K, A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask Commun 344(2015)172–180.
  113. Singh H, YadavA K, Vashisth S, Singh K, Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain, Int J Opt, 2015(2015)926135; doi.org/10.1155/2015/926135.
  114. Singh H, Yadav A K, Vashisth S, Singh K, A cryptosystem for watermarking based on fractional Fourier transform using a random phase mask in the input plane and a structured phase mask in the frequency plane, Asian J Phys 23(2014)597–612.
  115. Singh H, Yadav A K, Vashisth S, Singh K, Double phase-image encryption using gyrator-,and fractional Fourier transforms with structured phase mask in the frequency plane followed by a gyrator transform, Asian J Phys 24(2015)1–16.
  116. Kumar R, Sakshi, Singh K, An asymmetric optical cryptosystem based on Radon transform for phase image encryption, Asian J Phys 31(2022)A1–A12.
  117. Yadav A K, Vashisth S, Singh H, Singh K, Optical cryptography and watermarking using some fractional canonical transforms and structured masks, in “Adv Opt Sci Eng” Proc IEM OPTRONIX 2014, Kolkata, Eds V. Lakshminarayanan and I. Bhattacharya, (Springer Procd Physics), Vol166, 2015, pp 25–36.
  118. Yadav S, Singh H, Security augmentation grounded on Fresnel and Arnold transforms using hybrid chaotic structured phase mask, IET Image Process, 15(2020)1042–1052.
  119. Anshula, Singh H, Security-enrichment of an asymmetric optical image encryption-based devil’s vortex Fresnel lens phase mask and lower upper decomposition with partial pivoting in gyrator transform domain, Opt Quant Electron, 53(2021)204; doi.org/10.1007/s11082-021-02854-7.
  120. Anshula, Singh H, Cryptanalysis for double-image encryption using the DTLM in frequency plane with QR-decomposition and gyrator transform, Opt Rev, 28(2021)596–610.
  121. Chen H, Liu Z, Tanougast C, Blondel W, Asymmetric optical cryptosystem for multiple images based on devil’s spiral Fresnel lens phase and random spiral transform in gyrator domain, Sci Rep, 11(2021)20846; doi.org/10.1038/s41598-021-00276-9.
  122. Su Y, Wang X, Wang Z, Liu C, Li J, Xu K, Li S, Cai Z, Wan W, Security-enhanced multiple-image encryption based on modified phase retrieval algorithm with structured phase mask in Fresnel domain, Optik, 254(2022)168649; doi.org/10.1016/j.ijleo.2022.168649.
  123. Yang Q, Xi Z, Zhang M, Ouyang X, Xu Y, Cao Y, Wang S, Zhu L, Li X, Ultra-secure optical encryption based on tightly focused perfect optical vortex beams, Nanophoton, 11(2022)1063–1070.
  124. Zhang J, Yan A, Zhang H, Asymmetric encryption of invisible structured light 3D imaging, Appl Sci (MDPI), 12(2022)3563; doi.org/10.3390/app12073563.
  125. Mandapati V C, Vardhan H, Prabhakar S, Sakshi, Kumar R, Reddy S G, Singh R P, Singh K, Multi-user nonlinear optical cryptosystem based on polar decomposition and fractional vortex speckle patterns, Photonics (MDPI), 10(2023)561; doi.org/10.3390/photonics10050561.