Asian Journal of Physics Vol 31, Nos 3 – 6 (2022) 635-647

Ultrashort femtosecond pulse laser for directed energy system applications: An analysis

S Veerabuthiran* and Jagannath Nayak
Center for High Energy Systems and Sciences (CHESS), DRDO
Hyderabad-500 069, India

Dedicated to Professor Bishnu P Pal for his enormous contributions to the advancement of research and education in science and technology through his unique vision and outstanding dedication

High intensity pulse laser finds the wide applications in the scientific studies and industrial sectors. In recent years, ultrashort pulse laser (USPL) system found application in directed energy systems. USPLs have high peak power in the order of terawatt (TW) due to their short pulse duration (femtosecond) with low pulse energy. Short duration laser pulses are capable of generating intense electric fields and plasmas through laser filamentation when they interact with targeted materials. In general, a single laser filament has diameter of about 100 µm, which results pulse intensity of the order of TW/cm2. Plasma channel created in this process keeps the beam focused over a longer distances. Due to this property, USPL has capability to travel in adverse weather, high turbulence atmospheric conditions, etc. Since the peak intensity of ultrashort laser pulses at target is billion times greater compared to continuous wave (CW) laser, it can destroy the sensors and electronics using single shot pulse. Hence, laser directed energy system made of ultrashort pulse laser is very useful to counter fast moving aerial targets. It can vaporize the outer casing of an aerial target, rather than melting/burning as compared to kilowatt (kW) class CW laser direct energy systems (DES). This paper discusses the technical aspects of ultrashort pulse laser, their nonlinear propagation characteristics, the basic configuration of pulse laser DES, and material damage using the femtosecond laser. Theoretical calculations were carried out using the given system specifications to estimate the distance at which laser filaments generate. It was found that laser DES with 2 TW power is able to generate laser filaments even beyond 10 km. © Anita Publications. All rights reserved.
Keywords: USPL, DES, Laser filaments.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Kaushal H, Kaddoum G, Applications of lasers for tactical military operations, IEEE Access, 5(2017)20736; doi. 10.1109/ACCESS.2017.2755678.
  2. Coffey V C, High-energy lasers: new advances in defense applications. Optics & Photonics, October (2014) 28-35.
  3. Joshi D, Nayak J, Performance analysis of directed energy systems using single and multi-mode fiber lasers, 2017 IEEE Workshop on Recent Advances in Photonics (WRAP), (2017)1-5. doi. 10.1109/WRAP.2017.8468597.
  4. Pudo D, Galuga J, High energy laser weapon systems: evolution, analysis and perspectives, Can Mil J, 17(2017) 53–60.
  5. Alpha TRaF, Lockheed’s new mini laser super turret could change air combat forever. In: Foxtrot ALPHA, 2014; .
  6. Rogoway T, The airborne laser may rise again but it will look very different. In: Foxtrot ALPHA, 2015;
  7. Extance A, Military technology: Laser weapons get real, Nature, 521(2015)408–410.
  8. Kasparian J, Sauerbrey R, Chin S L, The critical laser intensity of self-guided light filaments in air, Appl Phys B, 71(2000)877–879.
  9. Durand M, Houard A, Prade B, Mysyrowicz A, Durécu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K, Schmitt R, Théberge F, Chateauneuf M, Daigle J-F, Dubois J, Kilometer range filamentation, Opt Exp, 21(2013)26836–26845.
  10. DiComo G, Helle M, Kaganovich D, Schmitt-Sody A, Elle J, Peñano J, Nonlinear self-channeling of high-power lasers through controlled atmospheric turbulence, J Opt Soc Am B, 37(2020)797–803.
  11. Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J,Wolf J P, Ultraintense light filaments transmitted through clouds, Appl Phys Lett, 83(2003)213–215.
  12. Méjean G, Kasparian J, Yu J, Salmon E, Frey S, Wolf J P, Skupin S, Vinçotte A, Nuter R, Champeaux S, Bergé L, Multifilamentation transmission through fog, Phys Rev E, 72(2005)026611;
  13. Teramobile website:
  14. Châteauneuf M, Dubois J, Canadian TeraWatt portable laser, Proc SPIE, 6400(2006)64000F8; doi: 10.1117/12.689996.
  20. Strickland D, Mourou G, Compression of amplified chirped optical pulses, Opt Commun, 56(1985)219–221.
  21. Musazzi S, Perini U (eds), Laser-Induced Breakdown Spectroscopy, Chapter 6, Springer Series in Optical Sciences, (2014), p182.
  22. Liu W, Chin S L, Direct measurement of the critical power of femtosecond Ti: sapphire laser pulse in air, Opt Express, 13(2005)5750–5755.
  23. Schillinger H, Sauerbrey R, Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses, Appl Phys B, 68(1999)753–756.
  24. Tzortzakis S, Prade B, Franco M, Mysyrowicz A, Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air, Opt Commun, 181(2000)123–127.
  25. Talebpour A, Abdel-Fattah A, Chin S L, Focusing limits of intense ultrafast laser pulses in a high pressure gas: road to new spectroscopic source, Opt Commun, 183(2000)479–484.
  26. Braun A, Korn G, Liu X, Du D, Squier J, Mourou G, Self-channeling of high-peak-power femtosecond laser pulses in air, Opt Lett, 20(1995)73–75.
  27. La Fontaine B, Vidal F, Jiang Z, Chien C Y, Comtois D, Desparois A, Johnston T W, Kieffer J C, Pépin H, Mercure H P, Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air, Phys Plasmas, 6(1999)1615–1621.
  28. Rodriguez M, Bourayou R, Méjean G, Kasparian J, Yu J, Salmon E, Scholz A, Stecklum B, Eislöffel J, Laux U, Hatzes A P, Sauerbrey R, Wöste L, Wolf J P, Kilometer-range nonlinear propagation of femtosecond laser pulses, Phys Rev E, 69(2004) 036607;
  29. Méchain G, Couairon A, André Y B, D’amico C, Franco M, Prade B, Tzortzakis S, Mysyrowicz A, Sauerbrey R, Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization, Appl Phys B, 7(2004)379–382.
  30. Mlejnek M, Wright E M, Moloney J V, Dynamic spatial replenishment of femtosecond pulses propagating in air, Opt Lett, 23(1998)382–384.
  31. Luo Q, Hosseini S A, Liu W, Gravel J F, Kosareva O G, Panov N A, Aközbek N, Kandidov V P, Roy G, Chin S L, Effect of beam diameter on the propagation of intense femtosecond laser pulses, Appl Phys B, 80(2005)35–38.
  32. Liu W, Théberge F, Arévalo E, Gravel J F, Becker A, Chin S L, Opt Lett, 30(2005)2602–2604.
  33. Kasparian J, Sauerbrey R, Chin S L, The critical laser intensity of self-guided light filaments in air, Appl Phys, B, 71(2000)877–879.
  34. Becker A, Aközbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas, Appl Phys B, 73(2001)287–290.
  35. Aközbek N, Iwasaki A, Becker A, Scalora M, Chin S L, Bowden C M, Phys Rev Lett, 89(2002)143901;
  36. Kasparian J, Sauerbrey R, Mondelain D, Niedermeier S, Yu J, Wolf J.-P, André Y B, Franco M, Prade B, Mysyrowicz A, Tzortzakis S, Rodriguez M, Wille H, Wöste L, Opt Lett, 25(2000)1397–1399.
  37. Kasparian J, Progress in Ultrafast Intense Laser Science II, (Springer), 2007, pp 281–300.
  38. Kasparian J. Progress in Ultrafast Intense Laser Science II, (Springer), 2007, pp 301–318.
  39. Tzortzakis S, Méchain G, Patalano G, André Y B, Prade B, Franco M, Mysyrowicz A, Munier J M, Gheudin M, Beaudin G, Encrenaz P, Opt Lett, 27(2002)1944–1946.
  40. Houard A, D’Amico C, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V,. Technical Digest of the CLEO/QELS Conference, Optical Society of America, Baltimore, 2007, paper QMH4.
  41. D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Coherent and incoherent radial THz emission from femtosecond filaments in air, Opt Exp, 15(2007)15274–15279.
  42. Hosseini S. Kosareva O, Panov N, Kandidov V P, Azarm A, Daigle J F, Savel’ev A B, Wang T J, Chin S L, Femtosecond laser filament in different air pressures simulating vertical propagation up to 10 km, Laser Phys Lett, 9(2012)868;
  43. Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J, Wolf J P, Appl Phys Lett, 83(2003)213–215.
  44. Méchain G, Méjean G, Ackermann R, Rohwetter P, André Y.–B, Kasparian J, Prade B, Stelmaszczyk K, Yu J, Salmon E, Winn W, Schlie L A, Mysyrowicz A, Sauerbrey R, Wöste L, Wolf J. -P, Appl Phys B, 80(2005)785–789.
  45. Ackermann R, Méjean G, Kasparian J, Yu J. Salmon E, Wolf J.-P, Laser filaments generated and transmitted in highly turbulent air, Opt Lett, 31(2006)86–88.
  46. Salamé R, Lascouxa N, Salmon E, Ackermann R, Kasparian J, Propagation of laser filaments through an extended turbulent region, Appl Phys Lett, 91(2007)171106;
  47. Effect of Laser Filament Irradiation on the CW laser Damage of composite materials, Technical Report, CHESS-DRDO, CHESS/CARS/2015/ST/003, 2017.
  48. Dai J, Wang Z, New analysis on laser-induced damage mechanism of CCD device, ICALEO, 2009(2009)258; doi: 10.2351/1.5061562.