ASIAN JOURNAL OF PHYSICS

An International Peer Reviewed Research Journal
Frequency : Monthly,
ISSN : 0971 – 3093
Editor-In-Chief (Hon.) :
Dr. V.K. Rastogi
e-mail:[email protected]
[email protected]

AJP ISSN : 0971 – 3093
Vol 25, No 10, October, 2016

25th Anniversary Year of AJP-2016


Special issue

on

Advances in High Precision Spectroscopy and Tests of Fundamental Physics, Part-2

Edited by

Bijaya Kumar Sahoo

Asian Journal of Physics

(A Publication Not for Profit)

Vol. 25, No 10 (2016)

 CONTENTS 

Guest Editorial                                                                               

About the Guest Editor

 

Light shifts induced by nuclear spin-dependent parity-nonconserving transitions of ultracold Fr for the detection of nuclear anapole moment

T Aoki, Y Torii, B K Sahoo, B P Das, K Harada, T Hayamizu, K Sakamoto, H Kawamura, T Inoue, A Uchiyama, S Ito, R Yoshioka,

K STanaka, M Itoh, A Hatakeyama, and Y Sakem

1247

The role of molecular electric dipole moments of mercury monohalides in the search for the electron electric dipole moment

V S Prasannaa, M Abe, B P Das

1259

Testing the standard model at low energies with atoms and molecules -searching for permanent electric

dipole moments and atomic parity violation

Klaus P                                                               

1267

Electron impact excitation of inert gases and plasma modeling

Priti, Lalita Sharma and Rajesh Srivastava 

1281

 Towards atomic parity violation test on barium ion

M Mukherjee, S Das, D De Munshi, T Dutta, N V Horne, P Liu, R Rebhi and D Yum  

1291

 The quest to find an electric dipole moment of the neutron

P Schmidt-Wellenburg 

1301

 Optical cooling of interacting atoms in a tightly confined trap

Somnath Naskar, Subrata Saha, Partha Goswami, Arpita Pal and Bimalendu Deb 

1331

 A survey on modelling and structural modification of atomic systems in plasma environment

S Dutta, J K Saha, S Bhattacharyya and T K Mukherjee  

1339

 Lepton number and flavour violation in models of neutrino mass generation

Frank F Deppisch 

1383

 EDMS of Closed-shell Atoms: An example of Xe atom

Koichiro Asahi, Tomoya Sato and Yuichi Ichikawa

1403

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1247-1258

Light shifts induced by nuclear spin-dependent parity-nonconserving interactions in ultracold Fr for the detection of the nuclear anapole moment

 

T Aoki1, Y. Torii1, B. K. Sahoo2, B P Das3, K Harada4, T Hayamizu4, K Sakamoto4,

H Kawamura 4,5, T Inoue 4,5, A Uchiyama4, S Ito4, R Yoshioka4, K S Tanaka4, M Itoh4, A Hatakeyama6, and Y Sakemi4

1Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan

2Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380 009, India

3International Education and Research Center of Science and Department of Physics, Tokyo Institute of Technology

2-1-2-1-H86 Ookayama Meguro-ku, Tokyo 152-8550, Japan

4Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan

5Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan

6Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan

 We investigate light shifts induced due to the nuclear spin-dependent (NSD) parity-nonconserving (PNC) interactions for the 7S1/2 – 6D5/2 transition in ultracold 210Fr. We find that for this transition the magnetic sublevels of F =13/2, M = 9/2 and F = 13/2, M = 7/2 shift by the same amount in the same direction due to the E2 transition and by different amounts in opposite directions due to the NSD PNC transition. This situation is favourable for measuring the nuclear anapole moment. For the above mentioned transition, the frequency difference of the F = 13/2, M = 1/2 to F = 13/2, M = –1/2 and the F = 13/2, M = 9/2 to F = 13/2, M = 7/2 transitions has no first order Zeeman shift and a small second order Zeeman shift. Measuring this frequency difference enables us to obtain information on the nuclear anapole moment, and it is insensitive to magnetic field fluctuation.© Anita Publications. All rights reserved.

Keywords: Precise measurement, Parity nonconservation, laser cooling, francium

Total Refs: 21

Light shifts induced by nuclear spin-dependent parity-nonconserving interactions in ultracold Fr for the detection of the nuclear anapole moment.pdf

T Aoki. et al.

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1259-1266

The role of molecular electric dipole moments of mercury monohalides in the

search for the electron electric dipole moment

 

V S Prasannaa1, M Abe2, B P Das

1Indian Institute of Astrophysics, II Block, Koramangala, Bangalore-560 034, India

2Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan

3International Education and Research Center of Science and Department of Physics,

Tokyo Institute of Technology, 2-12-1-H86 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

The molecular electric dipole moments, also referred to as the permanent electric dipole moments (PDMs), play an important role, in the sensitivity of the experiments that use molecules to probe the electric dipole moment of the electron (eEDM). In an earlier work, we had identified mercury monohalides as promising candidates for such experiments. Here, we have computed their PDMs for the first time, using a relativistic coupled cluster method (RCCM). We also present a detailed  analysis of  the correlation terms that we considered for the PDM, for each of the molecules, and study their trends. We also elucidate the role of PDMs in the sensitivity of prospective future EDM experiments with these molecules.© Anita Publications. All rights reserved.

Keywords Electric dipole moments, Mercury monohalides

Total Refs: 28

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1267-1280

Testing the standard model at low energies with atoms and

molecules -searching for permanent electric dipole moments and atomic parity violation

 

Klaus P Jungmann

University of Groningen, Van Swinderen Institute,

NL 9747 AA Groningen, The Netherlands

Precision experiments on atomic and molecular systems provide for testing very accurately important aspects of our present understanding of particle physics, and in particular the best theory to describe it, the Standard Model of Particle Physics (SM). The potential of low energy precise experiments for steering model building exceeds in a number of cases the possibilities of high energy physics experiments signicantly. If searches for yet forbidden processes are successful, hints to New Physics can be obtained. If results of precision measurements agree with present Standard Theory, speculative models can be limited or even disfavoured. Examples of low energy precision experiments with such transformative character are searches for a permanent Electric Dipole Moment (EDM) on atoms or molecules and measurements of Parity Violation (PV) in atoms or molecules. Here we discuss present and near future possibilities to search for New Physics in selected atomic and molecular systems.© Anita Publications. All rights reserved.

Keywords: Parity violation, Permanent electric dipole moment

Total Refs: 86

    1.    K.A. Olive et al. Chin. Phys. C 38, 090001 (2014); for a general introduction see: R. Oerter, The Theory of Almost Everything:The Standard Model, the Unsung Triumph of Modern Physics, PI Press, New York, ISBN 0-13-236678-9 (2006).
    2.    T. Blake, T. Gershon, G. Hiller, Annu. Rev. Nucl. Part. Sci. 65, 113 (2015).
    3.    H.V. Klapdor-Kleigrothaus, Sixty years of double beta decay: From nuclear Physics to beyond standard model particle physics, World Scientic,
Singapore ISBN 981-02-3779-0 (2001).
    4.    Proceedings, 23rd International Conference on Atomic Physics (ICAP 2012), Ol. Dulieu, P. Grangier, M. Leduc, H. Perrin (eds.), EPJ Web Conf. 57 (2013).
    5.    K. Jungmann, Ann. Phys. 525, 550 (2013); T. Fukuyama, Int. J. Mod. Phys. A 27, 1230015 (2012)
    6.    Sandars P G H, in: Atomic Physics 4, G. zu Putlitz, E.W. Weber, A. Winnacker (eds.), Plenum, New York and London, p. 71 (1975).
    7.    Roberts B M, V.A. Dzuba, V.V. Flambaum, Nuc. Part. Sci. 65, 63 (2015).
    8.    (a) S.G. Karshenboim, Phys. Rep. 422, 1 (2005); Proceedings 11th International Conference on Low Energy Antiproton Physics (LEAP2013),
T. Johansson, P. Froehlich, S. Jonsell (eds.), Hyperne Interact. 228 and 229 (2014);
           (b) M.G. Boshier, V.W. Hughes, K. Jungmann, zu Putlitz G, Comments on Atomic and Molecular Physics 33, 17 (1996).
    9.    Proceedings of the EXA 2014 Conference, P. Buehler (ed.), Hyperne Interactions 233 (2015).
    10.  K. Jungmann, arXiv:1603.01195v1 (2016).
    11.  Boshier M G, Hughes V W, Jungmann K, zu Putlitz G, Comm. At Mol Phys, 33(1996)17.
    12.  Rubbia A, Int J Mod Phys A, 19(2004) 3981.
    13.  CPT and Lorentz Symmetry IV, V.A. Kostelecky (ed.), World Scientic, Singapore (2014).
    14.  A. Kostelecky, N. Russell, arXiv:0801.0287v9 (2016); see also: A. Kostelecky, arXiv:1309.3761 (2013) and J. P. Noordmans, J. de Vries,
R. G. E. Timmermans, arXiv:1602.00496 (2016).
    15.  Jungmann K, Nature, 524(2015)168.
    16.  Colladay D, Kostelecky A, Phys Rev D, 55(1997)6760.
    17.  Sakharov A D, ETP Lett, 5(1967)24.
    18.  (a) J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys Rev Lett, 13,  (1964) 138;
           (b) J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys Rev, 140, B74 (1965).
    19.  L. Willmann and K. Jungmann, Ann. Phys.528, 108 (2016).
    20.  K. Jungmann, Ann. d. Phys. 525, 550 (2013).
    21.  P.G.H. Sandars, Contemporary Physics, 42, 97 (2001).
    22.  K. Harada, T. Aoki, K. Kato, H. Kawamura, T. Inoue, T. Aoki, A. Uchiyama, K. Sakamoto, S. Ito, M. Itoh, T. Hayamizu, A. Hatakeyama, K. Hatanaka,
T. Wakasa and Y. Sakemi, J. Phys. Conf. Ser. 691, 012017 (2016).
    23.  B. Yip, Bachelor thesis, University of Groningen, The Netherlands (2015) and references therein.
    24.  K. Jungmann, E.A. Dijck, J.Ol. Grasdijk, T. Meijknecht, A. Mohanty, N. Valappol, B. Yip and L. Willmann, conference proceedings
LEAP 2013, Kananzawa (in print).
    25.  V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, M. G. Kozlov, Phys Rev A, 66, 012111 (2002).
    26.  D. Mukherjee, B.K.Sahoo, H.S. Nataraj, B.P. Das, J. Phys. Chem. A 113, 12549 (2009).
    27.  P.G.H. Sandars, Physica Scripta, 1993, T46, 16 (1993).
    28.  B. K. Sahoo, L. W. Wansbeek, K. Jungmann, and R. G. E. Timmermans, Phys Rev A, 79, 052512 (2009).
    29.  B.M. Roberts, V.A. Dzuba, V.V. Flambaum, Annu. Rev. Nucl. Part. Sci. 65, 63 (2015) and references therein.
    30.  B. Graner, Y. Chen, E.G. Lindahl, B.R. Heckel, Phys. Rev. Lett. 116, 161601 (2016).
    31.  Pendlebury J M, Afach S, Ayres N J, Baker C A, Bison G Ban G, Bodek K, Burgho M, Geltenbort P, Green K, Grith W C, van der Grinten M, Gruji Z D, Harris P G, Hlaine V, Iaydjiev P, Ivanov S N, Kasprzak M, Kermaidic Y, Kirch K, Koch H.-C, Komposch S, Kozela A, Krempel J, Lauss B, Lefort T, Lemiere Y, May D J R, Musgrave M, Naviliat-Cuncic O, Piegsa F M, Pignol G, Prashanth P N, G. Quemener, Rawlik M, Rebreyend D, Richardson J D, Ries D, Roccia S, Rozpedzik D, Schnabel A, Schmidt-Wellenburg P, Severijns N, Shiers D, Thorne J A, Weis A, Winston O J, Wursten E, Zejma J, Zsigmond G, Phys Rev D, 92(2015)092003.
    32.   R.H. Parker, M.R. Dietrich, M.R. Kalita, N.D. Lemke, K.G. Bailey, M. Bishof, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. O’Connor,
and J.T. Singh, Phys. Rev. Lett. 114, 233002 (2015).
    33.   M.A. Rosenberry and T.E. Chupp, Phys. Rev. Lett. 86, 22 (2001).
    34.   J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Saurer, M.R. Tarbutt, E. Hinds, Nature 473, 493 (2011).
    35.   J. Baron, Campbell, W.C. Campbell, D. DeMille, J.M. Doyle, G. Gabrielse, Y.V. Gurvich, P.W. Hess, N.R. Hutzler, E. Kirilov, I. Kozyryev,
B.R. O’Leary, C.D. Panda, M.F. Parsons, E.S. Petrik, B. Spaun, A.C. Vutha, A.D. West, Science, 343, 269 (2014).
    36.   S. Hoekstra, H.L. Bethlem, A. Borschevsky, K. Jungmann, R.G.E. Timmermans, W. Ubachs, L. Will- mann, priv. com. (2016).
    37.   F. Almendinger, J.O. Grasdijk, W. Heil, K. Jungmann, S. Karpuk, H.-J. Krause, A. Oenhaeuser, M. Repetto, U. Schmidt, Y. Sobolev, L. Willmann,
S. Zimmer, Verhandl. DPG, HK 30.2, Darmstadt (2016).
    38.   C. Mrozik, O. Endner, C. Hauke, W. Heil, S. Karpuk, J. Klemmer, E.W. Otten, J. Phys. 294, 012007 (2011).
    39.   M. Repetto, S. Zimmer, F. Allmendinger, P. Blmler, M. Doll, J.O. Grasdijk, W. Heil, K. Jungmann, S. Karpuk, H.-J. Krause, A. Oenhaeusser,
U. Schmidt, Y. Sobolev, L. Willmann, J. Mag. Res. 265, 197 (2016).
    40.   J.S.M. Ginges and V.V. Flambaum,Phys. Rep. 397, 63 (2004).
    41.   D. DeMille, Physics Today 68, 34 (2015).
    42.   P.G.H. Sandars, Phys. Rev. Lett. 19, 1396 (1969).
    43.   E.A. Hinds, Physica Scripta T70, 34 (1997).
    44.   G. E. Harrison, P. G. H. Sandars, S. J. Wright, Phys. Rev. Lett. 22, 1263 (1969).
    45.   J. F. Barry, E. S. Shuman, E. B. Norrgard, D. DeMille, Phys. Rev. Lett. 108, 103002 (2012).
    46.   P. Jansen, M. Quintero-Perez, T.E. Wall, J.E.v.d. Berg, S. Hoekstra, H.L. Bethlem, Phys Rev A, 88, 04324 (2013).
    47.   J.E. van den Berg, S.C. Mathavan, C. Meinema, J. Nauta, T.H. Nijbroek, K. Jungmann, H.L. Bethlem, S. Hoekstra, J. Mol. Spectr. 300, 22 (2014).
    48.   M. Quintero-Perez, P. Jansen, T.E. Wall, J.E.v.d. Berg, S. Hoekstra, H.L Bethlem, Phys. Rev. Lett. 110, 133003 (2013).
    49.   M.A. Bouchiat, J. Guena, L. Pottier, L. Hunter, Phys. Lett. 134B, 463 (1984).
    50.   C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wiemen, Science 275, 1759 (1997); C.S. Wood, C.E. Wieman,
Phys. Rev. Lett. 82, 2484 (1999).
    51.   M.A. Bouchiat and C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997).
    52.   L.W. Wansbeek, PhD thesis, University of Groningen, The Netherlands (2011) and references therein.
    53.   B. K. Sahoo, B. P. Das, R. K. Chaudhuri, and D. Mukherjee, Phys Rev A, 75, 032507 (2007).
    54.   K. Tsigutin, D. Dounas-Frazer, A. Family, J.E. Stalnaker, V.V. Yashuk, D. Budker, Phys. Rev. Lett. 103, 071601 (2009).
    55    (a) L.W. Wansbeek, B.K. Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Phys Rev A, 78, 050501(R) (2008);
            (b) B.M. Roberts, V.A. Dzuba, V.V. Flambaum, Phys Rev A, 89, 012502 (2014);
            (c) V.A. Dzuba, V.V. Flambaum, Int. J. Mod. Phys. 21, 1230010 (2012) ; R. Pal, D. Jiang, M.S. Safronova, Phys Rev A, 79, 062505 (2009);
            (d) B.K. Sahoo, B.P. Das, R.K. Chaudhari, D. Mukherjee, R.G.E. Timmer-mans, K. Jungmann, Phys. Rev. A 76, 040504 (2007).
    56.   B.K. Sahoo, R. Chaudhuri, B. P. Das, D. Mukherjee Phys. Rev. Lett. 96, 163003 (2006).
    57.   S. Aubin, J. A. Behr, R. Collister, V. V. Flambaum, E. Gomez, G. Gwinner, K. P. Jackson, D. Melconian, L. A. Orozco, M. R. Pearson, D. Sheng,
G. D. Sprouse, M. Tandecki, J. Zhang, Y. Zhao, Hyperne Interactions 214, 163 (2013).
    58.   E. Mariotti, A. Khanbekyan, C. Marinelli, L. Marmugi, L. Moi, L. Corradi, A. Dainelli,R . Calabrese, G. Mazzocca, L. Tomassetti, Int. J. Mod. Phys.
E 23, 05 (2014).
    59.   N. Fortson, Phys. Rev. Lett. 70, 2383 (1993).
    60.   O. O. Versolato, G. S. Giri, L. W. Wansbeek, J. E. van den Berg, D. J. van der Hoek, K. Jungmann, W. L. Kruithof, C. J. G. Onderwater, B. K. Sahoo,
B. Santra, P. D. Shidling, R. G. E. Timmermans, L. Willmann, and H. W. Wilschut, Phys Rev A, 82, 010501(R) (2010).
    61.   BK Sahoo, BP Das, RK Chaudhuri, D Mukherjee, RGE Timmermans, K Jungmann, Phys. Rev. A 76, 040504 (2007).
    62.   A. Mohanty, Lifetimes. Level Energies and Light shifts in a Single Trapped Ba+ Ion, PhD thesis, University of Groningen, submitted (2016).
    63.   A. Mohanty, E.A. Dijck, N. Valappol, T. Meijknecht, L. Willmann, K. Jungmann, publ. in preparation.
    64.   U. Dammalapati, K. Jungmann, L.Willmann, J. Phys. Chem. Ref. Data 45, 013101 (2016).
    65.   G. S. Giri, O. O. Versolato, J. E. van den Berg, O. Boell, U. Dammalapati, D. J. van der Hoek, K. Jungmann, W. L. Kruithof, S. Mller, M. Nunez Portela,

C. J. G. Onderwater, B. Santra, R. G. E. Timmermans, L. W. Wansbeek, L. Willmann, and H. W. Wilschut, Phys Rev A, 84, 020503(R) (2011)
    66.   O.O. Versolato, L.W. Wansbeek, G.S. Giri, J.E.v.d. Berg, D.J.v.d. Hoek, K. Jungmann, W.L. Kruithof, C.J.G. Onderwater, B.K. Sahoo, B. Santra,

P.D. Shidling, R.G.E. Timmermans, L. Willmann, H.W. Wilschut, Hyperne Interactions 199, 9 (2011).
    67.   M. Nunez Portela, E. A. Dijck, A. Mohanty, H. Bekker, J. E. van den Berg, G. S. Giri, S. Hoekstra, C. J. G. Onderwater, S. Schlesser,
R.G.E. Timmermans, O.O. Versolato, L. Willmann, H.W. Wilschut, K. Jungmann, Appl. Phys. B 114, 173 (2014).
    68.   A. Mohanty, E.A. Dijck, M. Nunez Portela, N. Valappol, A.T. Grier, T. Meijknecht, L. Willmann, K. Jungmann, Hyperne Interaction 233, 113 (2015)
and references therein.
    69.   B. K. Sahoo, R. Chaudhuri, B. P. Das, D. Mukherjee, Phys. Rev. Lett. 96, 163003 (2006).
    70.   B. K. Sahoo, and B. P. Das, Phys Rev A, 86, 022506 (2012).
    71.   Safronova M S, Phys Rev A, 81, 052506 (2010).
    72.   E. Iskrenova-Tchoukova, and M. S. Safronova, Phys Rev A, 78, 012508 (2008).
    73.   J. Gurell, E. Biemont, K. Blagoev, V. Fivet, P. Lundin, S. Mannervik, L. O. Norlin, P. Quinet, D. Rostohar, P. Royen, and P. Schef, Phys Rev A,
75, 052506 (2007).
    74.   C. Guet, and W. R. Johnson, Phys Rev A, 76, 039905(E) (2007).
    75.   V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, Phys Rev A, 63, 062101 (2001).
    76.   C. Guet, W.R. Johnson, Phys Rev A, 44, 1531 (1991).
    77.   C. Auchter, T. W. Noel, M. R. Homan, S. R. Williams, B. B. Blinov, Phys Rev A, 90, 060501(R) (2014).
    78.   P. Royen, J. Gurell, P. Lundin, L. O. Norlin, and S. Mannervik, Phys Rev A, 76, 030502(R) (2007).
    79.   N. Yu, W. Nagourney, and H. Dehmelt, Phys. Rev. Lett. 78, 4898 (1997).
    80.   A. A. Madej, and J. D. Sankey, Phys Rev A, 41, 2621 (1990).
    81.   W. Nagourney, J. Sandberg, H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986).
    82.   Plumelle F, Desaintfuscien M, Duchene J L, Audoin C, Opt Commun, 34(1980)71.
    83.   E.A. Dijck, PhD thesis in preparation (2016).
    84.   Dijck E A, Portela M N, Grier A T, Jungmann K, Mohanty A, Valappol N, Willmann L, Phys Rev A, 91(2015)060501(R);
doi.org/10.1103/PhysRevA.91.060501. [email protected]
    85.   Karlsson H, Litzen U, Physica Scripta, 60(1999) 321.
    86.   (a) Davoudiasl H, Lee H.-S, Marciano W J, Phys Rev D, 89(2014)095006;
            (b) Kumar K S, Mantry S, Marciano W J, Souder P A, Ann Rev Nucl Part Sci, 63(2013)237.
            (c) Davoudiasl H, Lee H S, Marciano W J, Phys Rev D, 92(2015)055005; doi.org/10.1103/PhysRevD.92.055005.

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1281-1289

Electron impact excitation of inert gases and plasma modeling

 

Priti, Lalita Sharma and Rajesh Srivastava

Indian Institute of Technology Roorkee, Roorkee –247 667, India

A review of our recent studies using the relativistic distorted wave theory on electron impact excitation of argon and krypton is given along with the applications of the calculated fine–structure resolved cross sections to develop the collisional radiative models for Ar- and Kr- plasma. Fitting parameters of the excitation cross sections for various transitions are provided for plasma modeling purposes. New results for the excitation rate coefficients are presented as a function of increasing electron temperature in plasma © Anita Publications. All rights reserved.

Keywords: Plasma diagnostics; Electron impact excitation;Electron temperature, Electron density

Total Refs: 25

    1.    Zhu X M, Pu Y K, J Phys: D Appl Phys, 43(2010)403001; doi.org/10.1088/0022-3727/43/40/403001
    2.    Hartgers A, van Dijk J, Jonkers J, van der Mullen J A M, Comput Phys Commun, 135(2001)199; doi: 10.1016/S0010-4655(00)00231-9
    3.    Bostock C J, J Phys. B, 44(2011) 083001. doi: 10.1088/0953-4075/44/8/083001
    4.    Bostock C J, Fursa D V, Bray I, Phys Rev A, 80(2009) 052708. doi: 10.1103/PhysRevA.80.052708
    5.    Zatsarinny O, Bartschat K, Phys Rev A, 79(2009) 042713;doi: 10.1103/PhysRevA.79.042713
    6.    Srivastava R, Stauffer A D, Sharma L, Phys Rev A, 74(2006) 012715; doi: 10.1103/PhysRevA.74.012715
    7.    Jonsson P, He X, Fischer C Froese, Grant I P, Comput Phys Commun, 177(2007)597; doi: .10.1016/j.cpc.2007.06.002
    8.    Sharma L, Surzhykov A, Inal M K, Fritzsche S, Phys Rev A, 81(2010)023419; doi: 10.1103/PhysRevA.81.023419
    9.    Weber T, Boffard J B, Lin C C, Phys Rev A, 68(2003)032719; doi: 10.1103/PhysRevA.81.023419
    10.  Chilton J E, Lin C C, Phys Rev A, 60(1999)3712; doi: 10.1103/PhysRevA.60.3712
    11.  Chilton J E, Stewart M D (Jr), Lin C C, Phys Rev A, 62(2000)032714; doi: 10.1103/PhysRevA.62.032714
    12.  Trajmar S, Srivastava S K, Tanaka H, Nishimura H, Cartwright D C, Phys Rev A, 23(1981)2167; doi: 10.1103/PhysRevA.23.2167
    13.  Kaur S, Srivastava R, McEachran R P, Stauffer A D, J Phys B, 31(1998)4833; 10.1088/0953-4075/31/21/015
    14.  Sharma L, Srivastava R, Stauffer A D, Phys Rev A, 76(2007)024701; doi: 10.1103/PhysRevA.76.024701
    15.  Sharma L, Srivastava R, Stauffer A D, Eur Phys J: D, 62(2011)399; doi: 10.1140/epjd/e2011-10644-0
    16.  Gangwar R K, Sharma L, Srivastava R, Stauffer A D, Phys Rev A, 81(2010)052707; doi:10.1103/PhysRevA.81.052707
    17.  Gangwar R K, Sharma L, Srivastava R, Stauffer A D, Phys Rev A, 82(2010) 032710; doi: 032710.10.1103/PhysRevA.82.032710
    18.  Gangwar R K, Sharma L, Srivastava R, Stauffer A D, J Appl Phys, 111(2012)053307.
    19.  Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F, Phys Rev A, 52(1995)1115.
    20.  Ali M A, Stone P M, Int J Mass Spectrom. 271(2008) 51.
    21.  Dressler R A, Chiu Y H, Zatsarinny O, Bartschat K, Srivastava R, Sharma L, J Phys D, 42(2009) 185203.
    22.  For more information, see the NIST 2010 Atomic Spectra database (http://www.nist.gov/pml/data/asd.cfm).
    23.  Wiese W L, Brault J W, Danzmann K, Helbig V, Kock M, Phys Rev A, 39(1989)2461.
    24.  Palmero A, Hattum E D, Rudolph H, Habraken F H P M, J Phys D, 101(2007)053306.
    25.  Gangwar R K, Dipti, Stafford L, Srivastava R, Plasma Sources Sci. Technol, 25  (2016) 035025.

Electron impact excitation of inert gases and plasma modeling.pdf

Priti, Lalita Sharma and Rajesh Srivastava

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1291-1298

Towards atomic parity violation test on barium ion

 

M Mukherjee1,2,3, S Das4, D De Munshi1, T Dutta1, N V Horne, P Liu1, R Rebhi1, and D Yum1

1Centre for Quantum Technologies, National University Singapore, Singapore 117543

2Department of Physics, National University Singapore, Singapore 117551

3Maju Lab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

Precision measurement in atomic and molecular physics unveils fundamental properties of nature and its forces. Electro-weak interaction and its manifestation in atomic system is the focus of this article. In a series of experiments performed with trapped and laser cooled ions, it is now possible to pin down the uncertainties of our knowledge about the atomic physics of a heavy system like barium ion to a level below one percent. This also laid down the foundation of an atomic parity violation experiment to be performed with this ion in an ion trap with a precision which can in principle compete to the energy scale of present day large hadron collider (LHC).© Anita Publications. All rights reserved.

Keywords: Atomic system, Atomic Parity, Barium, Laser cooling

Total Refs:27

    1.    Gabrielse G, Hanneke D, Kinoshita T, NioM, Odom B, Phys Rev Lett, 97(2006)030802; doi.10.1103/PhysRevLett.97.030802
    2.    Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L,Tanner C E, Wieman C E, Science, 275(1997)1759-1763.
    3.    Pruttivarasin T, Ramm M, Porsev S G, Tupitsyn I I, Safronova M S, Hohensee M A, Häffner H, Nature, 517, 592 (2015)592-595; doi:10.1038/nature14091 
    4.    Wolfenstein L, Rev Mod Phys, 71(1999)S140; doi:10.1103/RevModPhys.71.S140
    5.    Ginges J S M, Flambaum V V, Phys Rep, 397(2004)63-154; 10.1016/j.physrep.2004.03.005
    6.    Mukherjee M, Kellerbauer A, Beck D, Blaum K, Bollen G, Carrel F, Delahaye P, Dilling J, George S, Guénaut C, Herfurth F, Herlert A, Kluge H.-J,
Köster U, Lunney D, Schwarz S, Schweikhard L, Yazidjian C, Phys Rev Lett, 93(2004)150801; doi:10.1103/PhysRevLett.93.150801
    7.    Zee A, Quantum feld theory in a nutshell, (Princeton University Press), ISBN: 9780691140346, 2003,
    8.    Ellis J, Phil Trans R Soc, A370(2012)818; doi: 10.1098/rsta.2011.0452
    9.    Carlson Carl E, arxiv.org:1502.05314 (2015).
    10.  Fortson N, Phys Rev Lett, 70(1993)2383; doi: 10.1103/PhysRevLett.70.2383
    11.  Mandal P, Mukherjee M, Phys Rev A, 82(2010)050101(R); 10.1103/PhysRevA.82.050101
    12.  Sahoo B K, Mandal P, Mukherjee M, Phys Rev A, 83(2011)030502(R); doi:10.1103/PhysRevA.83.030502
    13.  Ramm M, Pruttivarasin T, Kokish M, Talikdar I, Haener H, Phys Rev Lett, 111(2013)023004;doi:10.1103/ PhysRevLett.111.023004
    14.  Munshi D De, Dutta T, Rebhi R, Mukherjee M, Phys Rev A, 91(2015)040501(R); doi:10.1103/PhysRevA.91.040501
    15.  Dutta Tarun, Munshi Debashis De, Yum Dahyun, Rebhi Riadh, Mukherjee Manas, Scientifc Reports, 6(2016) 29772; arXiv:1604.01488
    16.  Dijck E A, Nuñez Portela M, Grier A T, Jungmann K, Mohanty A, Valappol N, Willmann L, Phys Rev A, 91(2015) 060501-5(R); doi.org/10.1103/PhysRevA.91.060501
    17.  Hettrich M, Ruster T, Kaufmann H, Roos C F, Schmiegelow C T, Schmidt-Kaler F, Poschinger U G, Phys Rev Lett, 115(2015)143003; doi.org/10.1103/PhysRevLett.115.143003
    18.  Gopakumar G, Merlitz H, Chaudhuri R K, Das B P, Mahapatra U S, Mukherjee D, Phys Rev A, 66(2002)032505; doi.org/10.1103/PhysRevA.66.032505
    19.  Dzuba V A, Flambaum V V, Ginges J S M, Phys Rev A, 63(2001)062101; doi: 10.1103/PhysRevA.63.062101
    20.  Guet C, Johnson W R, Phys Rev A, 44(1991)1531; doi: 10.1103/PhysRevA.44.1531
    21.  (a) Sahoo B K, Das B P, Chaudhuri R K, Mukherjee D, Phys Rev A, 75(2007)032507; doi: 10.1103/PhysRevA.75.032507
           (b) Sahoo B K, Chaudhuri R K, Das B P, Mukherjee D, Phys Rev Lett, 96(2006)163003; doi:10.1103/PhysRevLett.96.163003
    22.  Kastberg A, Kastberg A, Villemoes P, Arnesen A, Heijkenskjöld F, Langereis A, Jungner P, Linnæus S, J Opt Soc Am B, 10(1993)1330-1336.
    23.  Safronova U I, Phys Rev A, 81(2010)052506; doi:10.1103/PhysRevA.81.052506
    24.  (a) Dutta N, Majumder S, Phys Rev A, 90(2014)012522-6; doi: 10.1103/PhysRevA.90.012522
           (b) Kuske P, Kirchner N, Wittmann W, Andrä H J, Kaiser D, Phys Lett, 64A(1978)377-380.
    25.  Davidson M D, Snoek L C, Volten H, Dönszelmann A, Astron Astrophys, 255(1992)457-458.
    26.  Gallagher A, Phys Rev, 157(1967)24; doi: 10.1103/PhysRev.157.24
    27.  Kurz N, Dietrich M R, Shu G, Bowler R, Salacka J, Mirgon V, Blinov B B, Phys Rev A,77(2008)060501(R); doi: 10.1103/PhysRevA.77.060501

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1301-1329

The quest to find an electric dipole moment of the neutron

 

P Schmidt-Wellenburg

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Until now no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishingly small, escaping detection for the last 65 years, is not easy to explain. In general it is considered as one of the most sensitive probes for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/antimatter asymmetry of the Universe. The neutron EDM might one day help to distinguish different sources of CP-violation in combination with measurements of paramagnetic molecules, diamagnetic atoms and other nuclei. This review presents an overview of the most important concepts in searches for an nEDM as well as a brief overview of the worldwide efforts. © Anita Publications. All rights reserved.

Keywords: Precise measurement; Parity nonconservation, Laser cooling, Francium

Total Refs: 118

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 131-1338

Optical cooling of interacting atoms in a tightly confined trap

 

Somnath Naskar1,2, Subrata Saha1, Partha Goswami1, Arpita Pal1 and Bimalendu Deb1,3

1Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700 032, India.

2Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata-700 033, India

3Raman Center for Atomic, Molecular and Optical Sciences, IACS, Jadavpur, Kolkata- 700 032, India.

In a recent paper, we have proposed a novel laser cooling scheme for reducing collisional energy of a pair of atoms by using photoassociative transitions. In that paper, we considered two atoms in free space, that is we have not considered the effects of trap on the cooling process. Here in this paper, we qualitatively discuss the possibility of extending this idea for Raman sideband cooling of a pair of interacting atoms trapped in Lamb-Dicke (LD) regime. Apart from cooling, our method may be important for manipulating on-site interaction of atoms in an optical lattice. © Anita Publications. All rights reserved.

Keywords: optical cooling

Total Refs: 39

    1.    (a) Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A, Science, 269(1995)198; doi: 10.1126/science.269.5221.198
           (b) Davis K B, Mewes M. -O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W, Phys Rev Lett, 75(1995)3969;

doi: 10.1103/PhysRevLett.75.3969
           (c) Bradley C C, Sackett C A, Tollett J J, Hulet R G, Phys Rev Lett, 75(1995)1687; doi.org/10.1103/PhysRevLett.75.1687
    2.    (a) Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K, Ketterle W, Nature, 443(2006)961;doi: 10.1038/nature05224
           (b) Zwierlein M W, Schirotzek A, Schunck C H, Ketterle W, Science, 311(2006)492;doi: 10.1126/science.1122318
    3.    Mandel O, Greiner M, Widera A, Rom T, Häsch T W, Bloch I, Nature, 425(2003)937; doi: 10.1038/nature02008
    4.    Hänsch T W, Schawlow A, Opt Commun, 13(1975)68; doi:10.1016/0030-4018(75)90159-5
    5.    Wineland D J, Dehmelt H, Bull Am Phys Soc, 20 (1975)637-637.
    6.    Wineland D J, Drullinger R E, Walls F L, Phys Rev Lett, 40(1978)1639; doi:org/10.1103/PhysRevLett.40.1639
    7.    Neuhauser W, Hohenstatt M, Toschek P, Dehmelt H, Phys Rev Lett, 41(1978)233; doi: org/10.1103/PhysRevLett.41.233
    8.    Wineland D J, Itano W M, Phys Rev A, 20(1979)1521; doi:10.1103/PhysRevA.20.1521
    9.    Askaŕyan G A, Sov Phys, JETP, 15(1962)1088.
    10.  Letokhov V, JETP Lett, 7(1968)272.
    11.  Kastler A, J Phys Rad,11(1950)255; doi: org/10.1051/jphysrad:01950001106025500
    12.  Ashkin A, Science, 210(1980)1081; doi:org/ 10.1126/science.210.4474.1081
    13.  Letokhov V S, Minogin V G, Physics Reports, 73(1981)1; doi: doi.org/10.1016/0370-1573(81)90116-2
    14.  Stenholm S, Rev Mod Phys, 58(1986)699; doi:org/10.1103/RevModPhys.58.699
    15.  Cohen-Tannoudji C, Phillips W, Phys Today, 43(1990)33; doi: org/10.1063/1.881239
    16.  Metcalf H J, van der straten P, Laser Cooling and Trapping, (Springer), 1999.
    17.  Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A, Phys Rev Lett, 55(1985)48; doi: org/10.1103/PhysRevLett.55.48
    18.  Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I, J Opt Soc Am B, 6(1989)2084; doi: doi.org/10.1364/JOSAB.6.002084
    19.  Chang R, Hoendervanger A L, Bouton Q, Fang Y, Klafka T, Audo K, Aspect A, Westbrook C I, Cl´ement D, Phys Rev A,
90(2014)063407; doi.org/10.1103/PhysRevA.90.063407.
    20.  Lett P D, Watts R N, Westbrook C I, Phillips W, Gould P L, Metcalf H J, Phys Rev Lett, 61(1988)169; doi: org/10.1103/PhysRevLett.61.169
    21.  Dalibard J, Cohen-Tannoudji C, J Opt Soc Am B, 6(1989)2023; doi: org/10.1364/JOSAB.6.002023
    22.  Pritchard D E, Phys Rev Lett, 51(1983)1336; doi:org/10.1103/PhysRevLett.51.1336
    23.  Ungar P J, Weiss D S, Riis E, Chu S, J Opt Soc Am B, 6(1989)2058; doi: org/10.1364/JOSAB.6.002058
    24.  Saha S, Naskar S, Deb B, Phys Rev A, 94(2016) 023413.doi.org/10.1103/PhysRevA.94.023413
    25.  Yan M, DeSalvo B J, Huang Y, Naidon P, Killian T C, Phys Rev Lett, 111(2013)150402; doi: org/10.1103/PhysRevLett.111.150402
    26.  Taie S, Watanabe S, Ichinose T, Takahashi Y, Phys Rev Lett,116(2016) 043202; doi: org/10.1103/PhysRevLett.116.043202
    27.  Vuletić V, Chu S, Phys Rev Lett, 84(2000)3787; doi:org /10.1103/PhysRevLett.84.3787
    28.  Wineland D J, Itano W M, Bergquist J C, Hulet R G, Phys Rev A, 36(1987)5; doi: org/10.1103/PhysRevA.36.2220
    29.  DePue M T, McCormick C, WinotoS L, Oliver S, Weiss D S, Phys Rev Lett, 82(1999)2262; doi: org/10.1103/PhysRevLett.82.2262
    30.  Winoto S L, DePue M T, Bramall N E, Weiss D S, Phys Rev A, 59 (1999)R19(R); doi: org/10.1103/PhysRevA.59.R19
    31.  Goswami P, Paul A, Saha S, Deb B, Asian J Phys, 25(2016) (submitted).
    32.  Horak P, Hechenblaikner G, Gheri K M, Stecher H, Ritsch H, Phys Rev Lett, 79(1997)4974; doi.org/10.1103/PhysRevLett.79.4974
    33.  Hechenblaikner G, Gangl M, Horak P, Ritsch H, Phys Rev A, 58(1998)3030; doi: .org/10.1103/PhysRevA.58.3030
    34.  Chen H W, Black A T, Vuletić V, Phys Rev Lett, 90(2003)063003; doi:org/10.1103/PhysRevLett.90.063003
    35.  Maunz P, Puppe T, Schuster I, Syassen N, Pinkse PWH, Rempe G, Nature, 428(2004)50-52.
    36.  (a) Vuletić , Chen H W, Black A T, Phys Rev A, 64(2001)033405doi: org/10.1103/PhysRevA.64.033405
           (b) Zippilli S, Morigi G, Phys Rev Lett, 95(2005)143001; doi: org/10.1103/PhysRevLett.95.143001
           (c) Zippilli S, Morigi G, Phys Rev A, 72(2005)053408; doi: org/10.1103/PhysRevA.72.053408
    37.  Chuah B L, Lewty N C, Cazan R, Barett M D, Phys Rev A, 87(2013)043420; doi: org/10.1103/PhysRevA.87.043420
    38.  Leibrandt D R, Labaziewicz J, Vuletić V, Chuang I L, Phys Rev Lett, 103(2009)103001; doi: org/10.1103/PhysRevLett.103.103001
    39.  (a) Mølhave K, Drewsen M, Phys Rev A, 62(2000)011401(R); doi: org/10.1103/PhysRevA.62.011401
           (b) Ryjkov V L, Zhao X Z, Schuessler H A, Phys Rev A, 74(2006)023401; doi: org/10.1103/PhysRevA.74.023401
           (c) Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B, Schiller S, Phys Rev Lett, 97(2006)243005; doi: org/10.1103/PhysRevLett.97.243005

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1339-1381

A survey on modelling and structural modification of atomic

systems in plasma environment

 

S Dutta1, J K Saha2, S Bhattacharyya3 , and  T K Mukherjee 4

1 Belgharia Texmaco Estate School, Kolkata-700056, India

2Department of Physics, Aliah University, IIA/27, Newtown, Kolkata-700 156, India

3Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata- 700 131, India

4Department of Physics, Narula Institute of Technology, Agarpara, Kolkata- 700 109, India

In this review article, the effect of plasma environment on the structure of atomic systems has been discussed. With a brief description on basic properties of plasma followed by it’s classification and occurrences in astrophysical and laboratory scenario, we present the necessity of modeling the plasma environment by suitable potential and a detailed analysis on different methodologies of finding the potential within the bulk of plasma. The model potentials take significantly different forms depending upon the nature of the plasma i.e. whether it is classical or quantum, collisional or collision-less etc. Modification of structure along with other spectral properties of atomic systems such as energy levels, binding energies and ionization potential, continuum lowering, removal of degeneracy, static and dynamic polarizabilities, hyperpolarizabilities, oscillator strengths, transition probabilities etc. and collision dynamics of the many electron atoms within plasma environment are discussed. The experimental determination of the plasma parameters i.e. temperature and density by using spectroscopic techniques along with an account of recent X-ray free electron laser plasma experiments are also presented.

Keywords: Laser cooling, Photoassociative transitions, Raman sideband

Total Refs: 356

    1.       Pfalzner S, An Introduction to Inertial Confinement Fusion (CRC Press, Taylor and Francis Group, 2006).
    2.       Freidberg J P, Plasma Physics and Fusion energy (Cambridge University Press, 2007).
    3.       Hawryluk R J et. al., Nucl Fusion, 49(2009)065012.
    4.       https://www.iter.org/
    5.       Tonks L, Langmuir I, Phys Rev, 33(1929)195.
    6.       Shpatakovskaya G V, J Exp Theor Phys, 102(2006)466.
    7.       Ang L K, Zhang P, Phys Rev Lett, 98(2007)164802.
    8.       Leontovich M, Izv Akad Nauk SSR Ser Fiz Mat Nauk, 8(1994)16.
    9.       Zwicknagel G, Deutsch C, Phys Rev E, 56(1997)970.
    10.     Yaqoob F, Ali S, Murtaza G, Nasim M H, Phys Plas, 9(2002)3629.
    11.     Ali S, Nasim M H, Murtaza G, Phys Plas, 10(2003)941.
    12.     Ali S, Nasim M H, Murtaza G, Phys Plas, 10(2003)4207.
    13.     Shukla P K, Mamun A A, Introduction to Dusty Plasma Physics (Institute of Physics Publishing, Bristol and Philadelphia, 2002).
    14.     Goldston R J, Rutherford P H, Introduction to Plasma Physics (Institute of Physics Publishing, 1995).
    15.     Bellan P M, Fundamentals of Plasma Physics (2004).
    16.     Gurnett D A, Bhattacharjee A, Introduction to Plasma Physics (Cambridge University Press, 2005).
    17.     Ichimaru S, Rev Mod Phys, 54(1982)1017.
    18.     Fortov V E, Iakubov I T, Khrapak A G, Physics of Strongly Coupled Plasma (Oxford University Press, 2006).
    19.     Sil A N, Canuto S, Mukherjee P K, Adv Quantum Chem, 58(2009) and references therein for comprehensive list of works till 2009.
    20.     Debye P, Huckel E, Z Phys, 24(1923)185.
    21.     Stewart J C, Pyatt Jr. K D, Ap J, 144(1966)1203.
    22.     Lifshitz E M, Pitaevskii L P, Physical Kinetics (Butterworth-Heinemann, UK, 1981).
    23.     Montgomery D, Joyce G, Sugihara R, Plasma Phys, 10(1968)681.
    24.     Cooper G, Phys Fluids, 12(1969)2707.
    25.     Alexandrov A F, Bogdankevich L S, Rukhadze A A, Principles of Plasma Electrodynamics (Springer, New York, 1984).
    26.    Rostoker N, Nucl Fusion, 1(1961)101.
    27.    Pines D, J Nucl Energy Part C Plasma Phys, 2(1961)5.
    28.    Gradshteyn L S, Ryzhik I M, Table of Integrals, Series and Products, 7th ed. (Academic, New York, 1994).
    29.    Abramowitz M, Stegun I A, Handbook of Mathematical Functions (Dover, New York, 1972).
    30.    Steno L, Yu M Y, Shukla P K, Phys Fluids, 16(1973)450.
    31.    Bhatnagar P L, Gross E P, Krook M, Phys Rev, 94(1954)511-525.
    32.    Rozsnyai B F, Phys Rev A, 5(1972)1137.
    33.    Salzmann D, Phys Rev, A49(1994)3729.
    34.    Stein J, Goldberg I B, Shalitin D, Salzmann D, Phys Rev, A39(1989)2078.
    35.    Salzmann D, Stein J, Goldberg I B, Pratt R H, Phys Rev, A44(1991)1270.
    36.    Malnoult P, d’Etat B, Nguyen H, Phys Rev, A40(1989)1983.
    37.    Furutani Y, Ohashi K, Shimizu M, Fukuyama A, J Phys Soc Japan, 62(1993)3413.
    38.    Crowley B J B, Phys Rev A, 41(1990)2179.
    39.    Dharma-wardana M W C, Perrot F, Phys Rev, A26(1982)2096.
    40.    Rozsnyai B, Phys Rev, A43(1991)3035.
    41.    Liberman D A, Phys Rev B, 20(1979)4981.
    42.    Liberman D A, J Quant Spec Rad Trans, 27(1982)335.
    43.    Wilson B, Sonnad V, Sterne P, Isaacs W, J Quant Spec Rad Trans, 99(2006)658.
    44.    Chihara J, Phys Rev A, 33(1986)2575.
    45.    Dharma-wardana M W C, Perrot F, Phys Rev A, 45(1992)5883.
    46.    Murillo M S, Weisheit J, Hansen S B, Dharma-wardana M W C, Phys Rev E, 87(2013)063113.
    47.    Davis J, Blaha M, J Quant Spec Rad Trans, 27(1982)307.
    48.    Starrett C E, Daligault J, Saumon D, Phys Rev E, 91(2015)013104.
    49.    Dharma-wardana M W C, Contrib Plasma Phys, 55(2015)85.
    50.    Thiele R, Son S -K, Ziaja B, Santra R, Phys Rev A, 86(2012)033411.
    51.    Son S -K, Thiele R, Jurek Z, Ziaja B, Santra R, Phys Rev X, 4(2014)031004.
    52.    Slater J C, Phys Rev, 51(1937)846.
    53.    Pain J C, Dejonghe G, Blenski T, J Phys A, 39(2006)4659.
    54.    Faussurier G, Phys Rev E, 59(1999)7096.
    55.    Yuan J, Phys Rev E, 66(2002)047401.
    56.    Lumb S, Lumb S, Prasad V, Phys Lett A, 379(2015)1263.
    57.    Lumb S, Lumb S, Nautiyal V, Eur Phys J. D, 69(2015)176.
    58.    Kang S, Yang Y C, He J, Xiong F Q, Xu N, Cent Eur J Phys, 11(2013)584.
    59.    Stevanovic L J, Milojevic D, Publ Astron Obs Belgrade No, 91(2012)327.
    60.    Saha B, Mukherjee P K, Diercksen G H F, Astron Astroph, 396(2002)337.
    61.    Saha J K, Mukherjee T K, Mukherjee P K, Fricke B, Eur Phys J. D, 62(2011)205.
    62.    Saha B, Mukherjee P K, Bielinska-Waz D, Karwowski J, J Quant Spec Rad Trans, 92(2005)1.
    63.    Shukla P K, Steno L, Bingham R, Phys Lett A, 359(2006)218.
    64.    Arfken G B, Weber H J, Harris F E, Mathematical Method For Physicists (Elsevier, 2014).
    65.    Shukla P K, Eliasson B, Phys Lett A, 372(2008)2897{2899.
    66.    Else D, Kompaneets R, Vladimirov S V, Phys Rev E, 82(2010)026410.
    67.    Lindhard J, Dan K, Vidensk Selsk Mat Fys Medd, 28(1954)1.
    68.    Klimontovich Y L, Silin V P, Zh Eksp Teor Fiz, 23(1952)151.
    69.    Dutta S, Saha J K, Mukherjee T K, Phys Plas, 22(2015)062103.
    70.    Fichard E E, Franco V, J Phys A, 13(1980)2331.
    71.    Shukla P K, Phys Plas, 1(1994)1362.
    72.    Varma R K, Shukla P K, Krishan V, Phys Rev E, 47(1993)5.
    73.    Jung Y D, Astrophys J, 695(2009)917.
    74.    Hasegawa A, Mima K, Duong-van M, Phys Rev Lett, 54(1985)2608.
    75.    Summers D, Thorne R M, Phys Fluids B, 3(1991)1835.
    76.    Bryant D A, J Plasma Phys, 56(1996)87.
    77.    Rubab N, Murtaza G, Phys Scr, 74(2006)145{148.
    78.    Ecker G, Weizel W, Ann Physik, 17(1956)126.
    79.    Schey H M, Schartz J L, Phys Rev, 139(1965)B1428.
    80.    Jackson J L, Klein L S, Phys Rev, 177(1969)352.
    81.    Muller-Kirsten H J W, Vahedi-Faridi N, J Math Phys, 14(1973)1291.
    82.    Killingbeck J, Phys Lett, 65(1978)180.
    83.    Dutt R, Mukherji U, Z Phys A, 302(1981)199.
    84.    Dutt R, Ray A, Ray P P, Phys Lett, 83(1981)65.
    85.    Vrscay E R, Phys Rev A, 33(1986)1433.
    86.    Smith C R, Phys Rev, 134(1964)5A. : DOI: 10.1103/PhysRev.134.A1235.
    87.    Iafrate G J, Mendelsohm L B, Phys Rev, 182(1969)244.
    88.    Fisher I Z, Krylovich V I, Sov Phys Tech Phys, 2(1957)1184.
    89.    Margenau H, Lewis M, Rev Mod Phys, 31(1959)569.
    90.    Harris G M, Phys Rev, 125(1962)1131.
    91.    Krieger J B, Phys Rev, 178(1969)1337.
    92.    Bonch-Bruevich V L, Glasko V B, Sov Phys Solid St, 2(1962)371.
    93.    Rouse C A, Phys Rev, 159(1967)41; 176(1968)423 (Erratum).
    94.    Rogers F J, Garboske Jr. H C, Harwood D J, Phys Rev A, 1(1970)1577.
    95.    Lam C S, Varshni Y P, Phys Rev A, 4(1971)1875.
    96.    Nauenberg M, Phys Rev A, 8(1973)2217 .
    97.    Garavelli S L, Oliveira F A, Phys Rev Lett, 66(1991)1310.
    98.    Roussel K M, Connell O, Phys Rev A, 9(1974)52.
    99.    McEnnan J, Kissel L, Pratt R H, Phys Rev A, 13(1976)532.
    100.    Metha C H, Patil S H, Phys Rev A, 17(1978)34.
    101.    Lai C S, Lin W C, Phys Lett A, 78(1980)335.
    102.    Dutt R, Mukherji U, Phys Lett, 90(1982)395.
    103.    Matthys P, De Meyer H, Phys Rev A, 38(1988)1168.
    104.    Stubbins C, Phys Rev A, 48(1993)220.
    105.    Bielinska-Waz D, Karwowski J, Saha B, Mukherjee P K, Phys Rev E, 69(2004)016404.
    106.    Paul S, Ho Y K, Phys Plas, 16(2009)063302.
    107.    Qi Y Y, Wang J G, Janev R K, Phys Rev A, 80(2009)032502.
    108.    Saha B, Mukherjee P K, Diercksen G H F, Astron Astrophys, 396(2002)337.
    109.    Saha J K, Mukherjee T K, Mukherjee P K, Fricke B, Eur Phys J D, 62(2011)205.
    110.    Lumb S, Lumb S, Prasad V, Phys Lett A, 379(2015)1263.
    111.    Paul S, Ho Y K, Phys Plas, 15(2008)073301.
    112.    Paul S, Ho Y K, Phys Rev A, 79(2009)032714.
    113.    Paul S, Ho Y K, J Phys B, 43(2010)065701.
    114.    Bahar M K, Soylu A, Phys Plas, 21(2014)092703.
    115.    Bylicki M, Stacho A, Karwowski J, Mukherjee P K, Chem Phys, 331(2007)346.
    116.    Pawlak M, Bylicki M, Phys Rev A, 83(2011)023419.
    117.    Xie L Y, Wang J G, Janev R K, Phys Plas, 21(2014)063304.
    118.    Qi Y Y, Wang J G, Janev R K, Phys Rev A, 78(2008)062511.
    119.    Chang T N, Fang T K, Gao X, Phys Rev A, 91(2015)063422.
    120.    Qi Y Y, Wu Y, Wang J G, Qu Y Z, Phys Plas, 16(2009)023502.
    121.    Zhao L, Ho Y K, Phys Plas, 11(2004)1695.
    122.    Lin C, Ho Y K, Phys Plas, 17(2010)093302.
    123.    Rogers F J, Phys Rev A, 10(1974)2441.
    124.    Lam C S, Varshni Y P, Phys Rev A, 27(1983)418.
    125.    Wang Z, Winkler P, Phys Rev A, 52(1995)216.
    126.    Winkler P, Phys Rev E, 53(1996)5517.
    127.    Lopez X, Sarasola C, Ugalde J M, J Phys Chem A, 101(1997)1804.
    128.    Ray D, Mukherjee P K, Eur Phys J D, 2(1998)39.
    129.    Ray D, Mukherjee P K, J Phys B, 31(1998)3479.
    130.    Mukherjee P K, Karwowski J, Diercksen G H F, Chem Phys Lett, 363(2002)323.
    131.    Saha B, Mukherjee T K, Mukherjee P K, Diercksen G H F, Theor Chem Acc, 108(2002)305.
    132.    Saha B, Mukherjee P K, Belinizka-Waz D, Karwowski J, J Quan Spec Rad Trans, 78(2003)131.
    133.    Kar S, Ho Y K, Chem Phys Lett, 449(2007)246.
    134.    Kar S, Ho Y K, J Quan Spec Rad Trans, 109(2008)445.
    135.    Kar S, Ho Y K, Phys Rev A, 80(2009)062511.
    136.    Kar S, Ho Y K, Phys Rev A, 81(2010)062506.
    137.    Lin Y-C, Lin C-Y, Ho Y K, Phys Rev A, 85(2012)042516.
    138.    Serra P, Sabre K, J Phys B, 45(2012)235003.
    139.    Kar S, Phys Rev A, 86(2012)062516.
    140.    Kar S, Wang Y S, Li W Q, Sun X D, Int J Quan Chem, 115(2015)1573.
    141.    Woltz L A, Jacobs V L, Hooper Jr. C F, Mancini R C, Phys Rev A, 44(1991)1281.
    142.    Mancini R C, Kilcrease D P, Woltz L A, Hooper Jr. C F, Comput Phys Commun, 63(1991)314.
    143.    Kar S, Ho Y K, Phys Rev E, 70(2004)066411.
    144.    Kar S, Ho Y K, New J Phys, 7(2005)141.
    145.    Kar S, Ho Y K, Chem Phys Lett, 402(2005)544.
    146.    Kar S, Ho Y K, Phys Rev A, 72(2005)010703(R).
    147.    Kar S, Ho Y K, J Phys B, 39(2006)2445.
    148.    Kar S, Ho Y K, J Phys B, 40(2007)1403.
    149.    Kar S, Ho Y K, Eur Phys J D, 44(2007)1.
    150.    Kar S, Ho Y K, Int J Quan Chem, 108(2008)1491.
    151.    Kar S, Ho Y K, J Phys B, 42(2009)055001.
    152.    Kar S, Ho Y K, J Phys B, 42(2009)044007.
    153.    Kar S, Ho Y K, Phys Rev A, 79(2009)062508.
    154.    Kar S, Ho Y K, Phys Rev A, 83(2011)042506.
    155.    Chakraborty S, Ho Y K, Chem Phys Lett, 438(2007)99.
    156.    Sil A N, Mukherjee P K, Int J Quan Chem, 102(2005)1061.
    157.    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K, J Phys B, 42(2009)245701.
    158.    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K, J Quan Spec Rad Trans, 111(2010)675.
    159.    Saha J K, Bhattacharyya S, Mukherjee T K, International Review of Atomic and Molecular Physics, 3(2012)1.
    160. Kar S, Wang Y, Jiang Z, Li S, Ratnavelu K, Phys Plas, 21(2014)012105.
    161.    Hu X Q, Wang Y, Jiang Z, Jiang P, Kar S, Phys Plas, 22(2015)112107.
    162.    Basu A, Europhys Lett, 88(2009)Number 5. DOI : http://dx.doi.org/10.1209/0295-5075/88/53001
    163.    Basu A, J Phys B, 43(2010)Number 11. DOI : http://dx.doi.org/10.1088/0953-4075/43/11/115202
    164.    Basu A, Eur Phys J D, 61(2011)51.
    165.    Basu A, Eur Phys J D, 65(2011)405.
    166.    Jiao L, Ho Y K, Phys Plas, 20(2013)083303.
    167.    Kar S, Ho Y K, J Phys B, 44(2010)015001.
    168.    Jiao L, Ho Y K, J Quan Spec Rad Trans, 144(2014)27.
    169.    Jiao L G, Ho Y K, Int J Quan Chem, 113(2013)2569.
    170.    Saha B, Mukherjee P K, Waz D B, Karwowski J, J Quan Spec Rad Trans, 92(2005)1.
    171.    Das M, Chaudhuri R K, Chattopadhyay S, Mahapatra U S, Mukherjee P K, J Phys B, 44(2011)165701.
    172.    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z, Eur Phys J D, 66(2012)125.
    173.    Sahoo S, Ho Y K, Phys Plas, 13(2006)063301.
    174.    Lin C, Ho Y K, Phys Rev A, 81(2010)033405.
    175.    Li H, Kar S, Phys Plas, 19(2012)073303.
    176.    Li H W, Kar S, Jiang P, Int J Quan Chem, 113(2013)1493.
    177.    Kar S, Li H W, Shen Z C, Cent Eur J Phys, 11(2013)915.
    178.    Ning N L, Qi Y Y, Chin Phys B, 21(2012)123201.
    179.    Hiroshi O, Tokuei S, Kaoru Y, Diercksen G H F, J Phys B, 38(2005)917.
    180.    Qi Y Y, Wu Y, Wang J G, Phys Plas, 16(2009)033507.
    181.    Shuai K, Juan H, Ning X, Yong C C, Commun Theor Phys, 62(2014)881.
    182.    Dutta S, Saha J K, Chandra R, Mukherjee T K, Phys Plas, 23(2016)042107.
    183.    Qi Y Y, Ning L N, Phys Plas, 21(2014)033301.
    184.    Das M, Das M, Chaudhuri R K, Chattaopadhyay S, Phys Rev A, 85(2012)042506.
    185.    Mondal P K, Dutta N N, Dixit G, Majumder S, Phys Rev A, 87(2013)062502.
    186.    Saha B, Fritzsche S, Phys Rev E, 73(2006)036405.
    187.    Chaudhuri R K, Chattaopadhyay S, Mahapatra U S, Phys Plas, 19(2012)082701.
    188.    Das M, Sahoo B K, Pal S, Phys Rev A, 93(2016)052513.
    189.    Saha B, Mukherjee P K, Phys Lett A, 302(2002)105.
    190.    Sil A N, Saha B, Mukherjee P K, Phys Lett A, 324(2004)308.
    191.    Saha B, Mukherjee T K, Mukherjee P K, Chem Phys Lett, 373(2003)218.
    192.    Bhattacharyya S, Sil A N, Mukherjee T K, Mukherjee P K, Vasu P, Int J Quan Chem, 107(2007)946.
    193.    Bhattacharyya S, Sil A N, Mukherjee T K, Mukherjee P K, Phys Plas, 14(2007)024503.
    194.    Sen S, Mandal P, Mukherjee P K, Eur Phys J D, 62(2011)379.
    195.    Kar S, Ho Y K, Phys Rev A, 71(2005)052503.
    196.    Kar S, Ho Y K, Phys Rev A, 73(2006)032502.
    197.    Kar S, Ho Y K, Chem Phys Lett, 424(2006)403.
    198.    Bertini L, Mella M, Bressanini D, Morosi G, Phys Rev A, 69(2004)042504.
    199.    Mukherjee P K, Fritzsche S, Fricke B, Phys Lett A, 360(2006)287{290.
    200.    Kar S, Ho Y K, Phys Lett A, 368(2007)476.
    201.    Ghoshal A, Ho Y K, Int J Quan Chem, 111(2011)4288{4295.
    202.    Kar S, Ho Y K, Phys Rev A, 75(2007)062509.
    203.    Kar S, Ho Y K, Eur Phys J D, 48(2008)157{165.
    204.    Ghoshal A, Ho Y K, J Phys B, 43(2010)115007.
    205.    Richard J M, Phys Rev A, 67(2003)034702.
    206.    Bressanini D, Morosi G, Bertini L, Mella M, Few Body Systems, 31(2002)199-204.
    207.    Sil A N, Pawlak M, Mukherjee P K, Bylicki M, Journal of Quantitative Spectroscopy and Radiative Transfer, 109(2008)873{880.
    208.    Ho Y K, Kar S, Few Body Systems, 44(2008)253-256.
    209.    Pawlak M, Bylicki M, Saha J K, Mukherjee P K, J Phys B, 42(2009)215701.
    210.    Pont F, Serra P, Phys Rev A, 79(2009)032508.
    211.    Kar S, Ho Y K, Chem Phys Lett, 506(2011)282{285.
    212.    Kar S, Ho Y K, Phys Rev A, 86(2012)014502.
    213.    Dutta S, Saha J K, Bhattacharyya S, Mukherjee P K, Mukherjee T K, Phys Scr, 89(2014)015401.
    214.    Pawlak M, Bylicki M, Mukherjee P K, J Phys B, 47(2014)095701.
    215.    Pindzola M S, Loch S D, Colgan J, Fontes C J, Phys Rev A, 77(2008)062707.
    216.    Liu L, Wang J G, Janev R K, Phys Rev A, 77(2008)042712.
    217.    Basu A, Ghosh A S, Nu Ins Meth In Phys Res B, 266(2008)522.
    218.    Basu A, J Phys B, 43(2010)115202.
    219.    Qi Y Y, Ning L N, Wang J G, Qu Y Z, Phys Plas, 20(2013)123301.
    220.    Qi Y Y, Ye D D, Wang J G, Qu Y Z, Chin Phys B, 24(2015)033403.
    221.    Zhang S B, Wang J G, Janev R K, Phys Rev A, 81(2010)032707.
    222.    Zhang S B, Wang J G, Janev R K, Phys Rev Lett, 104(2010)023203.
    223.    Zhang S B, Wang J G, Janev R K, Qu Y Z, Chen X J, Phys Rev A, 81(2010)065402.
    224.    Zhang S B, Wang J G, Janev R K, Chen X J, Phys Rev A, 83(2011)032724.
    225.    Zammit M C, Fursa D V, Bray I, Phys Rev A, 82(2010)052705 .
    226.    Zammit M C, Fursa D V, Bray I, Janev R K, Phys Rev A, 84(2011)052705.
    227.    Zammit M C, Fursa D V, Bray I, Chem Phys, 398(2012)214.
    228.    Jung Y D, Physics of Fluids B, 5(1993)3432.
    229.    Jung Y D, Phys Plas, 2(1995)332.
    230.    Jung Y D, Yoon J S, J Phys B, 29(1996)3549.
    231.    Jung Y D, Phys Plas, 4(1997)21.
    232.    Cooper J W, Phys Rev A, 128(1962)681.
    233.    Cooper J W, Phys Rev Lett, 13(1964)762. Interaction of maxima in the absorption of soft x rays.
    234.    Weisheit J C, Shore B W, The Astro Jour, 194(1974)519.
    235.    Zhang S B, Qi Y Y, Qu Y Z, Chen X J, Wang J G, Chin Phys Lett, 27(2010)013401.
    236.    Rej P, Ghoshal A, Phys Plas, 21(2014)093507.
    237.    Nayek S Ghoshal A, Euro Phys J D, 64(2011)257.
    238.    Rej P, Ghoshal A, Phys Plas, 21(2014)113509.
    239.    Ghoshal A, Kamali M Z M, Ratnavelu K, Phys Plas, 20(2013)013506.
    240.    Bhattacharya A, Kamali M Z M, Ghoshal A, Ratnavelu K, Phys Plas, 20(2013)083514.
    241.    Nayek S Ghoshal A, Phys Plas, 19(2012)113501.
    242.    Ma J, Cheng Y, Wang Y C, Zhou Y, Phys Plas, 19(2012)063303.
    243.    Zhou Y, Ratnavelu K, McCarthy I E, Phys Rev A, 71(2005)042703.
    244.    Pandey M K, Lin Y C, Ho Y K, J Phys B, 49(2016)034007.
    245.    Liu L, Wang J G, J Phys B, 41(2008)155701.
    246.    Liu L, Wang J G, Janev R K, Phys Rev A, 77(2008)032709.
    247.    Jakimovski D, Liu L, Wang J G, Janev R K, J Phys B, 43(2010)165202.
    248.    Zhao Y Q, Liu L, Wang J G, Janev R K, Xue P, Phys Rev A, 82(2010)022701.
    249.    Liu L, Wang J G, Janev R K, Phys Rev A, 79(2009)052702.
    250.    Fritsch W, Lin C D, Phys Rep, 202(1991)1.
    251.    Wu Y, Wang J G, Krstic P S, Janev R K, J Phys B, 43(2010)201003.
    252.    Zhang Y, Liu C H, Wu Y, Wang J G, Qu Y Z, Yan J, Phys Rev A, 82(2010)052706.
    253.    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M, Phys Rev A, 46(1992)3846.
    254.    Pandey M, Lin Y C, Ho Y K, Phys Plas, 20(2013)022104.
    255.    Pandey M, Lin Y C, Ho Y K, Phys Plas, 19(2012)062104.
    256.    Bhattacharya A, Kamali M Z M, Ghoshal A, Ratnavelu K, Phys Plas, 22(2015)023512.
    257.    Bonch-Bruevich V L, Glasko V B, Sov Phys Dokl, 4(1959)147.
    258.    Takimoto N, J Phys Soc Japan, 14(1959)1142.
    259.    McIrvine E C, J Phys Soc Japan, 15(1960)928.
    260.    Hall G L, Phys Chem Solids, 23(1962)1147.
    261.    Bonch-Bruevich V L, Kogan Sh M, Sov Phys Solid State, 1(1960)1118.
    262.    Yukawa H, Proc Phys Math Soc Japan, 17(1935)48.
    263.    Green A E S, Phys Rev, 75(1949)1926.
    264.    Ghoshal A, Ho Y K, Phys Rev E, 81(2010)016403.
    265.    Ghoshal A, Ho Y K, Mod Phys Lett B, 25(2011)1619.
    266.    Dutt R, Phys Lett A, 73(1979)310; ibid. 90(1982)395.
    267.    Ray P P, Ray A, Phys Lett A, 78(1980)443.
    268.    Lai C S, Phys Rev A, 26(1982)4.
    269.    Chatterjee A, Phys Rev A, 34(1986)3.
    270.    Ikhdair S M, Sever R, Z Phys D, 28(1993)1.
    271.    Ghoshal A, Ho Y K, J Phys B, 42(2009)075002.
    272.    Ghoshal A, Ho Y K, Phys Rev A, 79(2009)062514.
    273.    Ghoshal A, Ho Y K, J Phys B, 42(2009)175006.
    274.    Jiang Z, Zhang Y Z, Kar S, Phys Plas, 22(2015)052105.
    275.    Nayek S, Ghoshal A, Phys Scr, 85(2012)035301.
    276.    Roy A K, Int J Quan Chem, 113(2013)1503.
    277.    Lumb S, Lumb S, Munjal D, Prasad V, Phys Scr, 90(2015)095603.
    278.    Modesto-Costa L, Canuto S, Mukherjee P K, Phys Plas, 22(2015)032902 .
    279.    Chaudhuri S K, Mukherjee P K, Fricke B, Phys Plas, 22(2015)123120.
    280.    Chaudhuri S K, Modesto-Costa L, Mukherjee P K, Phys Plas, 23(2016)053305.
    281.    Salpeter E E, Van Horn H M, ApJ, 155(1969)183.
    282.    Itoh N, Ichimaru S, Phys Rev A, 16(1977)2178.
    283.    Itoh N, Ichimaru S, Phys Rev A, 19(1979)2476.
    284.    Scheibner K, Weisheit J C, Lane N F, Phys Rev A, 35(1987)1252.
    285.    Jung Y D, Eur Phys J D, 7(1999)249.
    286.    Ray D, Phys Rev E, 62(2000)4126.
    287.    Rozsnyai B F, Phys Rev A, 43(1991)3035.
    288.    Skupsky S, Phys Rev A, 21(1980)1316.
    289.    Nguyen H, Koenig M, Benredjem D, Caby M, Coulaud G, Phys Rev A, 33(1986)1279.
    290.    Griem H R, Phys Rev A, 38(1988)2943.
    291.    Seidel J, Arndt S, Kraeft W D, Phys Rev E, 52(1995)5387.
    292.    Gupta U, Rajagopal A K, Phys Rept, 87(1982)259.
    293.    Sil A N, Saha B, Mukherjee P K, Int J Quan Chem, 104(2005)903.
    294.    Bhattacharyya S, Sil A N, Fritzsche S, Mukherjee P K, Eur Phys J D, 46(2008)1.
    295.    Hong W P, Jung Y D, J Plasma Phys, 82(2016)455820101.
    296.    Li X, Rosmej F B, Eur Phys Lett, 99(2012)33001.
    297.    Sil A N, Mukherjee P K, Int J Quan Chem, 106(2006)465.
    298.    Sil A N, Bhattacharyya S, Mukherjee P K, Int J Quan Chem, 107(2007)2708.
    299.    Sil A N, Anton J, Fritzsche S, Mukherjee P K, Fricke B, Eur Phys J D, 55(2009)645.
    300.    Saha J K, Mukherjee T K, Mukherjee P K, Fricke B, Eur Phys J D, 66(2012)43.
    301.    Saha J K, Mukherjee T K, Mukherjee P K, Fricke B, Phys Plas, 20(2013)042703.
    302.    Bhattacharyya S, Saha J K, Mukherjee T K, Phys Rev A, 91(2015)042515.
    303.    Kim C G, Jung Y D, J Appl Phys, 96(2004)913.
    304.    Ki D H, Jung Y D, J Appl Phys, 97(2010)071501.
    305.    Li H W, Kar S, Eur Phys J D, 66(2012)304.
    306.    Kar S, Wang Y, Ho Y K, J Phys: Conference Series, 635(2015)122001.
    307.    Jiang P, Kar S, Zhou Y, Phys Plas, 20(2013)012126.
    308.    Jiang P, Kar S, Zhou Y, Few Body Syst, 54(2013)1911-1919.
    309.    Kar S, Jiang Z, Cheng Y, Ho Y K, J Phys: Conference Series, 635(2015)052019.
    310.    Carroll P K, Kennedy E T, Phys Rev Lett, 38(1977)1068.
    311.    Kennedy E T, Carroll P K, J Phys B, 11(1978)965.
    312.    Bradley D K, Kilkenny J, Rose S J, Hares J D, Phys Rev Lett, 59(1987)2995.
    313.    Riley D, Willi O, Rose S J, Afsar-Rad T, Europhys Lett, 10(1989)135.
    314.    Riley D, Gizzi L A, Khattak F Y, Mackinnon A J, Viana S M, Willi O, Phys Rev Lett, 69(1992)3739.
    315.    Saemann A, Eidmann K, Golovkin I E, Mancini R C, Andersson E, Forster E, Witte K, Phys Rev Lett, 82(1999)4843.
    316.    Shlyaptseva A S, Nilsen J, Bruch R, Kantsyrev V L, Akulinichev V V, Pivinsky E G, Phys Scr, 52(1995)377.
    317.    Nantel M, Ma G, Gu S, C^otfie C Y, Itatani J, Umstadter D, Phys Rev Lett, 80(1998)4442.
    318.    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, Stamm R, Talin B, Asfaw A, Klein L S, Lee R W,

Phys Rev E, 57(1998)4650.
    319.    Hutchinson I H, Principles of Plasma Diagnostics, Cambridge University Press, Cambridge (1987).
    320.    Greig J R, Griem H R, Zones L A, Odaf T, Phys Rev Lett, 24(1970)3.
    321.    Aglitskii E V, Boiko V A, Vinogradov A V, Yukov E A, Sov J Quant Electron, 4(1974)322.
    322.    Bitter M, Hill K W, Sauthofi N R, Efthimion P C, Meservey E, Roney W, von Goeler S, Horton R, Goldman M, Stodiek W, Phys Rev Lett, 43(1979)129.
    323.    Bollanti S, Lazzaro P D, Flora F, Letardi T, Palladino L, Reale A, Batani D, Mauri A, Scafati A, Grilli A, Faenov A Y, Pikuz T A, Pikuz S A,
Osterheld A, Phys Scr, 51(1995)326.
    324.    Gizzi L A, Cecchetti C A, Galimberti M, Giulietti A, Giulietti D, Labate L, Laville S, Tomassini P, Phys Plas, 10(2003)4601.
    325.    Marchuk O, Bertschinger G, Kunze H J, Urnov A, Goryaev F, TEXTOR-team, J Phys B, 40(2007)4403.
    326.    Shefield J, Plasma Scattering of Electromagnetic Radiation, Academic Press, New York (1975).
    327.    Narihara K, Yamada I, Hayashi H, Yamauchi K, Rev Sci Instrum, 72(2001)1122.
    328.    Boddeker St, Gunter S, Konies A, Hitzschke L, Kunze H J, Phys Rev E, 47(1990)2785.
    329.    Boddeker St, Kunze H J, Oks E, Phys Rev Lett, 47(1995)2785.
    330.    Suzuki C, Kato T, Sakaue H A, Kato D, Sato K, Tamura N, Sudo S, Yamamoto N, Tanuma H, Ohashi H, D’Arcy R, O’Sullivan G,
J Phys B, 43(2010)074027.
    331.    Da Silva L B, Barbee Jr. T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E,
Wan A S, Weber F, Phys Rev Lett, 74(1995)3991.
    332.    Kawahata K, Tanaka K, Ito Y, Ejiri A, Okajima S, Rev Sci Instrum, 70(1999)707.
    333.    Smith R F, Dunn J, Nilsen J, Shlyaptsev V N, Moon S, Filevich J, Rocca J J, Marconi M C, Hunter J R, Barbee Jr. T W, Phys Rev Lett, 89(2002)065004.
    334.    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D, Phys Plas, 13(2006)010702.
    335.    Hill K W, Beiersdorfer P, Bitter M, Fredrickson E, von Goeler S, Hsuan H, McGuire K, Sauthofi N R, Sesnic S, Stevens J E, Course and Workshop
on Basic and Advanced Diagnostic Techniques for Fusion Plasmas, Varenna, Italy, Ed. Stott Pet al., 1(1986)16.
    336.    Beiersdorfer P, Osterheld A L, Phillips T W, Bitter M, Hill K W, von Goeler S, Phys Rev E, 52(1995)1980.
    337.    Kallne E, Kallne J, Dubau J, Marmar E S, Rice J E, Phys Rev Lett, 52(1984)2245.
    338.    Bitter M, Gu M F, Vainshtein L A, Beiersdorfer P, Bertschinger G, Marchuk O, Bell R, LeBlanc B, Hill K W, Johnson D, Roquemore L,
Phys Rev Lett, 91(2003)265001.
    339.    Biedermann C, Radtke R, Fournier K B, Phys Rev E, 66(2002)066404.
    340.    Emma P et al., Nature Photonics, 4(2010)641.
    341.    Young Let al., Nature, 466(2010)56.
    342.    Vinko S M et al., Nature, 482(2012)59.
    343.    Schlotter W F et al.,Review of Scientific Instruments, 83(2012)043107.
    344.    Cho B I et al., Phys Rev Lett, 109(2012)245003.
    345.    Ciricosta O et al., Phys Rev Lett, 109(2012)065002.
    346.    Ecker G, Kroll W, Phys Fluids, 6(1963)62.
    347.    Preston T R, Vinko S M, Ciricosta O, Chung H K, Lee R W, Wark J S, High Energy Density Physics, 9(2013)258.
    348.    Hoarty D J et al., Phys Rev Lett, 110(2013)265003.
    349.    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R, Phys Rev X, 4(2014)031004.
    350.    Rackstrawa D S et al., High Energy Density Physics, 11(2014)59.
    351.    Vinko S M et al., Nature Communications, 6(2015)6397.
    352.    Lfievy A et al., Phys Plas, 22(2015)030703.
    353.    Ciricosta O et al., Nature Communications, 1(2016)11713.
    354.    Ziaja B, Jurek Z, Medvedev N, Saxena V, Son S K, Santra R, Photonics, 2(2015)256.
    355.    Albert F, Physics, 7(2014)20.
    356.    Gunst J, Litvinov Y A, Keitel C H, Pfialfiy A, Phys Rev Lett, 112(2014)082501.

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1383-1402

Lepton number and flavour violation  in models of neutrino mass generation

 

Frank F Deppisch

Department of Physics & Astronomy,

University College London, London WC1E 6BT, United Kingdom

Models of neutrino mass generation constitute well motivated scenarios of beyond-the-Standard-Model physics. The interplay between high energy collider physics and low energy searches provide us with an effective approach to rule out, constrain and pinpoint such models. In this review article, we highlight the phenomenological impact of neutrino mass models incorporating lepton number violating (LNV) and charged lepton flavour violating (LFV) processes. New sources of LNV and LFV are generally expected to be present in many new physics scenarios beyond the Standard Model to explain non-zero neutrino masses, and their observation would provide crucial information on the nature of the underlying interactions. We will focus on searches for low-energy LNV and LFV processes such as neutrinoless double beta decay and µ→ e γ, but we will also highlight the potential impact of LNV/LFV processes at the LHC. If new physics occurs at a scale accessible by the LHC, the underlying mediators could potentially be probed in high detail. We will give a brief overview of  examples where such searches can help determine the mechanism of light neutrino mass generation and potentially falsify baryogenesis mechanisms.© Anita Publications. All rights reserved.

Keywords: Lepton number violating (LNV), lepton flavour violating (LFV), Majorana particles

Total Refs: 111

1. Minkowski P, Phys. Lett. B67, 421 (1977).
2. Gell-Mann M, P. Ramond, R. Slansky(1979), Print-80-0576 (CERN).
3. Mohapatra R N, and G. Senjanovic, 091801 44, 912 (1980).
4. Schechter J, and J.W. F. Valle, Phys Rev D, 22, 2227 (1980).
5. Schechter J, and J.W. F. Valle, Phys Rev D, 25, 774 (1982).
6. Fukuda Y et al., 091801 81, 1562-1567 (1998).
7. Ahmad Q R et al., 091801 89, 011301 (2002).
8. Eguchi K et al., 091801 90, 021802 (2003).
9. Nunokawa H, S. J. Parke, and J.W. F. Valle, Prog. Part. Nucl. Phys. 60, 338-402 (2008).
10 . Pas H, M. Hirsch, H.V. Klapdor-Kleingrothaus, S. G. Kovalenko, Phys. Lett. B453, 194–198 (1999).
11. Pas H, M. Hirsch, H.V. Klapdor-Kleingrothaus, S. G. Kovalenko, Phys. Lett. B498, 35–39 (2001).
12. Macolino C, Mod.Phys.Lett. A29(1), 1430001 (2014).
13. Deppisch F F, Hirsch M, Pas H, J Phys, G39(2012)124007.
14. Maltoni M, Schwetz T, Tortola M A, Valle J W F, New J Phys, 6(2004)122, hep-ph/0405172.//?
15. A. Hoecker(2012).
16. Abada A , Comptes Rendus Physique 13, 180-185 (2012), 8 pages, 6 figures/ to appear in C. R. Physique (2011).
17. Feldmann T, PoS BEAUTY2011, 017 (2011).
18. Bhattacharyya G, Leser P, P¨as H, Phys Rev D, 83, 011701 (2011).
19. Joshipura A S and S. D. Rindani, Phys Lett, B260, 149–153 (1991).
20. Branco G, Grimus W, Lavoura L, Phys Lett B, 380(1996)119-126.
21. Kubo J, Mondragon A, Mondragon M, Rodriguez-Jauregui E, Prog Theor Phys, 109(2003)795-807.
22. Botella F, Branco G, Rebelo M, Phys Lett B, 687(2010)194-200.
23. Froggatt C, H. B. Nielsen, Nucl.Phys. B147, 277 (1979).
24. Barbieri R, L. J. Hall, Nuovo Cim. A110, 1–30 (1997).
25. Barbieri R, L. J. Hall, S. Raby, A. Romanino, Nucl.Phys. B493, 3-26 (1997).
26. Barbieri R, L. J. Hall, A. Romanino, Phys Lett B, 401(1997) 47-53.
27. S. King, JHEP 0508, 105 (2005).
28. S. King and G. G. Ross, Phys Lett B, 520, 243-253 (2001).
29. S. King and G. G. Ross, Phys Lett B, 574, 239-252 (2003), Dedicated to Ian I. Kogan.
30. J. Adam et al., Nucl.Phys. B834, 1-12 (2010).
31. J. Adam et al., Phy Rev Lett,107, 171801 (2011), 5 pages, 2 figures, accepted for publication at Phys. Rev.Lett.
32. U. Bellgardt et al., Nucl.Phys. B299, 1 (1988).
33. J. Hewett et al.(2012), 229 pages.
34. A. Czarnecki, W. J. Marciano, and K. Melnikov, AIP Conf.Proc. 435, 409–418 (1998).
35. R. Kitano, M. Koike, and Y. Okada, Phys Rev D, 66, 096002 (2002).
36. W. J. Marciano, T. Mori, J. M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315–341 (2008).
37. M. Raidal, A. van der Schaaf, I. Bigi, M. Mangano, Y. K. Semertzidis et al., Eur.Phys.J. C57, 13–182 (2008).
38. V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon, Phys Rev D, 80, 013002 (2009).
39. W. H. Bertl et al., Eur.Phys.J. C47, 337–346 (2006).
40. R. K. Kutschke (2011).
41. A. Kurup, Nucl.Phys.Proc.Suppl. 218, 38-43 (2011).
42. R. Tschirhart, Nucl.Phys.Proc.Suppl. 210-211, 203-205 (2011).
43. R. Barlow, Nucl.Phys.Proc.Suppl. 218, 44-49 (2011).
44. D. Asner et al.(2010), Long author list – awaiting processing.
45. B. Aubert et al., Phy Rev Lett 104, 021802 (2010), 7 pages, 2 encapsulated postscript figures, submitted to Physical Review Letters.
46. Y. Miyazaki et al., Phys Lett B, 251-257 (2011), Long author list – awaiting processing.
47.M. Bona et al.(2007).
48. T. A. et al. (Belle II)(2010).

49. K. Hayasaka, Journal of Physics: Conference Series, 171(1), 012079 (2009).
50. M. Giffels, J. Kallarackal, M. Kramer, B. O’Leary, A. Stahl, Phys Rev D,77, 073010 (2008).
51. P. Seyfert(May) (2012), Talk given at Flavour Physics and CP Violation 2012, Hefei, Anhui, China, 21 – 25May 2012.
52. J. Albrecht and et al. (LHCb)(May) (2012), Linked to LHCb-ANA-2011-100.
53. G. Altarelli and F. Feruglio, Rev.Mod.Phys. 82, 2701-2729 (2010).
54. L. Calibbi, Z. Lalak, S. Pokorski, R Ziegler, (2012).
55. D. Wyler L. Wolfenstein, Nucl.Phys. B218, 205 (1983).
56. J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, J. Valle, Phys Lett B, 187, 303 (1987).
57. A. Ilakovac, A. Pilaftsis, Nucl.Phys. B437, 491 (1995).
58. D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nucl.Phys. B444, 451-467 (1995).
59. Pilaftsis A, Phys Rev Lett, 95, 081602 (2005).
60. Pilaftsis A, Underwood T E, Phys Rev D, 72(2005)113001; doi.org/10.1103/PhysRevD.72.11300
61. Kersten J, Smirnov A Y, Phys Rev D, 76(2007)073005; doi.org/10.1103/PhysRevD.76.073005
62. Mohapatra R N, Valle J W F, Phys Rev D,34(1986) 1642.
63. Gonzalez-Garcia M C, Valle J W F, Phys Lett B, 216(1989)360.
64. Kovalenko S, Lu Z, Schmidt I, Phys Rev D, 80(2009)073014; doi.org/10.1103/PhysRevD.80.073014
65. A. Atre, T. Han, S. Pascoli, B. Zhang, JHEP 0905, 030 (2009).
66. Deppisch F F, Bhupal Dev P S, Pilaftsis A, New J Phys, 17(2015)075019.
67. A. Pilaftsis, Nucl. Phys. B504, 61-107 (1997).
68. A. Pilaftsis, Z. Phys. C55, 275-282 (1992).
69. Khachatryan V et al., Phys Lett B,748(2015)144-166; doi:10.1016/j.physletb.2015.06.070
70. S. Glashow(1980), ed. M. Levy et al. (Plenum, New York), p. 707.
71. L. J. Hall, V. A. Kostelecky, S. Raby, Nucl. Phys. B267, 415 (1986).
72. F. Borzumati and A. Masiero, Phys. Rev. Lett. 57, 961 (1986).
73. R. Barbieri and L. J. Hall, Phys Lett B, 338, 212-218 (1994).
74. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys Rev D, 53, 2442-2459 (1996).
75. J. Hisano, D. Nomura, Phys Rev D, 59, 116005 (1999).
76. J. A. Casas, A. Ibarra, Nucl. Phys. B618, 171-204 (2001).
77. A. Kageyama, S. Kaneko, N. Shimoyama, M. Tanimoto, Phys Rev D, 65, 096010 (2002).
78. F. Deppisch, H. Paes, A. Redelbach, R¨uckl R, Y. Shimizu, Eur. Phys. J. C, 28(2003)365-374.
79. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizupp. 1012–1017 (2002).
80. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizu, Nucl.Phys.Proc.Suppl. 116, 316-320 (2003).
81. R. S. Chivukula and H. Georgi, Phys Lett B, 188, 99 (1987).
82. L. Hall, L. Randall, Phys Rev Lett, 65, (1990)2939-2942.
83. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Nucl Phys B, 645(2002)155-187.
84. Cirigliano V, Grinstein B, Isidori G, Wise M B, Nucl Phys B, 728(2005)121-134.
85. F. An et al., Phys Rev Lett, 108, (2012) 171803, 5 figures. Version to appear in Phys. Rev. Lett.
86. J. Ahn et al.(2012).
87. Das S, Deppisch F, Kittel O, Valle J, Phys Rev D, 86(2012)055006; doi.org/10.1103/PhysRevD.86.055006
88.  Pati J C, Salam A, Phys Rev D, 10(1974)275-289.
89. R. Mohapatra and J. C. Pati, Phys Rev D, 11, 2558 (1975).
90. G. Senjanovic and R. N. Mohapatra, Phys Rev D, 12, 1502 (1975).
91. P. Duka, J. Gluza, and M. Zralek, Annals Phys. 280, 336–408 (2000).
92. V. Cirigliano, A. Kurylov, M. Ramsey-Musolf, P. Vogel, Phys Rev D, 70, 075007 (2004).
93. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizu, Phys Rev D, 69, 054014 (2004).
94. J. Aguilar-Saavedra, F. Deppisch, O. Kittel, J. Valle, Phys Rev D, 091301 (2012).
95. F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu, U. Sarkar, Phys Rev D, 93(1), 013011 (2016).
96. F. F. Deppisch, N. Desai, and J.W. F. Valle, Phys Rev D, 89(5), 051302 (2014).
97. Keung W Y, Senjanovic G, Phy Rev Lett, 50(1983)1427.
98. M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, Phys Rev D, 83, 115014 (2011).
99.  Deppisch F F, Gonzalo T E, Patra S, Sahu N, Sarkar U, Phys Rev D, 90(2014)053014.
100. Khachatryan V et al., Eur Phys J C, 74(11), (2014) 3149.
101. Allanach B, Kom C, P¨as H, Phys Rev Lett, 103(2009)091801.
102. Hirsch M, Klapdor-Kleingrothaus H V, Kovalenko S G, Phys Rev D, 54(1996)4207-4210.
103. F. F. Deppisch, J. Harz, and M. Hirsch, Phys Rev Lett, 112(2014)221601;doi
104. F. F. Deppisch, J. Harz, M. Hirsch, W. C. Huang, H. Ps, Phys Rev D, 92(2015)036005.
105. M. Fukugita, T. Yanagida, Phys Lett B,174, 45 (1986).
106. V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B, 155, (1985) 36.
107. F. Deppisch, H. P¨as, Phys.Rev.Lett. 98, (2007) 232501.
108. M. Doi, T. Kotani, H. Nishiura, E. Takasugi, Prog.Theor.Phys. 69, (1983) 602.
109. Deppisch F, Jackson C, Nasteva I, Soldner-Rembold S, Prog Part Nucl Phys, 64(2010)278-280.
110. Hirsch M, Staub F, Vicente A, Phys Rev D, 85(2012)113013; doi.org/10.1103/PhysRevD.85.113013
111. A. Abada, D. Das, A. Vicente, C. Weiland, JHEP 1209, 015 (2012)Vol.

 

Asian Journal of Physics

Vol. 25 No 10 (2016) 1403-1412

EDMS of Closed-shell Atoms: An example of Xe atom

 

Koichiro Asahia, b, Tomoya Satoa, b and Yuichi Ichikawa a,b

aNishina Center, RIKE2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan

 bDepartment of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Current status of studies of electric dipole moments (EDMs) in the site of closed-shell atoms is discussed. Although the EDM of a Hg atom is the best confined EDM among all the particles ever studied, it includes contributions from multiple sources of different physics origins, the most important of which are CT, and , and therefore the determination of sizes of the three sources separately requires another two EDMs in this site to be known. For this reason the improvement in the accuracy of Xe EDM would be of crucial significance. A setup for the Xe EDM experiment using a nuclear spin oscillator scheme is under development.© Anita Publications. All rights reserved..

Keywords:Electric dipole moments (EDMs), Nuclear spin,Standard Model (SM)

Total Refs: 37

    1.    Aad G et al. (ATLAS Collaboration), Phys Lett B, 716(2012)1-29; doi:10.1016/j.physletb.2012.08.0202.
    2.    Chatrchyan S, et al (CMS Collaboration), Phys Lett B, 716(2012)30-61; doi: 10.1016/j.physletb.2012.08.021
    3.    Baak M, Goebel M, Haller J, Hoecker A, Kennedy D, Kogler R, Moenig K, Schott M, Stelzer J, Eur Phys C, 72 (2012)2205;
doi: 10.1140/epjc/s10052-012-2205-9
    4.    Erler J, Ramsey-Musolf M J, Prog Part Nucl Phys, 54(2005)351-442; doi: 10.1016/j.ppnp.2004.08.001
    5.    Cirigliano V, Li Y, Profumo S, Ramsey-Musolf M J, J High Energy Phys, 01(2010)002; doi:10.1007/JHEP01(2010)002
    6.    Schiff L I, Phys Rev, 132(1963)2194-2200.
    7.    Ginges J S M, Flambaum V V, Phys Rep, 397(2004)63-154.
    8.    Engel J, Ramsey-Musolf M J, van Kolck U, Prog Part Nucl Phys, 71(2013)21-27.
    9.    Haxton W C, Henley E M, Phys Rev Lett, 51(1983)1937-1940.
    10.  Ban S, Dobaczewski J, Engel J, Shukla A, Phys Rev C, 82(2010)015501; doi: 10.1103/PhysRevC.82.015501
    11.  Dzuba V A, Flambaum F F, Ginges J S M, Kozlov M G, Phys Rev A, 66 (2002) 012111; doi: 10.1103/PhysRevA.66.012111
    12.  Yoshinaga N, Higashiyama K, Arai R, Teruya E, Phys Rev C, 89(2014)045501; doi: 10.1103/PhysRevC.89.045501
    13.  Dzuba V A, Flambaum F F, Silverstrov P G, Phys Lett B, 154(1985)93-95.
    14.  Singh Y, Sahoo B K, Das B P, Phys Rev A, 89(2014)030502(R); doi.org/10.1103/PhysRevA.89.030502
    15.  Latha K V P, Angom D, Das B P, Mukherjee D, Phys Rev Lett, 103(2009)083001; doi:10.1103/PhysRevLett.103.083001
    16.  Latha K V P, Amjith P R, Phys Rev A, 87(2013)022509; doi: 10.1103/PhysRevA.87.022509
    17.  Dobaczewski J, Engel J, Phys Rev Lett, 94 (2005) 232502; doi: 10.1103/PhysRevLett.94.232502
    18.  Ellis J, Lee J S, Pilaftsis A, J High Energy Phys, 02(2011)045; doi:10.1007/JHEP02(2011)045
    19.  Chupp T, Ramsey-Musolf M, Phys Rev C, 91(2015)035502; doi: 10.1103/PhysRevC.91.035502
    20.  Fukuyama T, Int J Mod Phys A, 27(2012)1230015; doi: 10.1142/S0217751X12300153
    21.  Fukuyama T, Asahi K, Int J Mod Phys A, 31(2016)1650082; doi: 10.1142/S0217751X16500822
    22.  Graner B, Chen Y, Lindahl E G, Heckel R, Phys Rev Lett, 16(2016)161601; doi:10.1103/PhysRevLett.116.161601
    23.  Parker R H, Dietrich M R, Kalita M R, Lemke N D, Bailey K G, Bishof M, Greene J P, Holt R J, Korsch W, Lu Z -T, Mueller P, O’Connor T P,
Singh J T, Phys Rev Lett, 114(2015)233002; doi: 10.1103/PhysRevLett.114.233002
    24.  Tardiff E R, Rand E T, Bal G C, Chupp T E, Garnsworthy A B, Garrett P, Hayden M E, Kierans C A, Lorenzon W, Pearson M R, Schaub C,
Svensson C E, Hyperfine Interact, 225(2014)197-206; doi: 10.1007/s10751-013-0898-2
    25.  Kuchler F, Fielinger P, Wurm D, EPJ Web Conf. 66(2014)5011; doi: 10.1051/epjconf/20146605011
    26.  Inoue T, Furukawa T, Yoshimi A, Nanao T, Chikamori M, Suzuki K, Hayashi H, Miyatake H, Ichikawa Y, Tsuchiya M, Hatakeyama N, Kagami S,
Uchida M, Ueno H, Matsuo Y, Fukuyama T, Asahi K, Eur Phys J: D, 70(2016) 129; doi: 10.1140/epjd/e2016-70034-8
    27.  Rosenberry M A, Chupp T E, Phys Rev Lett, 86(2001)22; doi: 10.1103/PhysRevLett.86.22
    28.  (a) Cho D, Sangster K, Hinds E A, Phys Rev Lett, 63(1989)2559-2562.
           (b) Cho D, Sangster K, Hinds E A, Phys Rev A, 44(1991)2783-2799.
    29.  Auerbach N, Flambaum F F, Spevak V, Phys Rev Lett, 76(1996)4316-4319.
    30.  Yoshimi A, Asahi K, Sakai K,Tsuda M, Yogo K, Ogawa H, Suzuki T, Nagakura M, Phys Lett A, 304(2002)13-20.
    31.  Inoue T, Furukawa T, Nanao T, Yoshimi A, Suzuki K,Chikamori M, Tsuchiya M, Hayashi H, Uchida M, Asahi K, Phys Procedia, 17(2011)100-103;
doi: 10.1016/j.phpro.2011.06.024
    32.  Furukawa T, Inoue T, Nanao T, Yoshimi A, Tsuchiya M, Hayashi H, Uchida M, Asahi K, J Phys Conf Ser, 312 (2011)102005;
doi: 10.1088/1742-6596/312/10/102005
    33.  Yoshimi A, Inoue T, Furukawa T, Nanao T, Suzuki K,Chikamori M, Tsuchiya M, Hayashi H, Uchida M, Hatakeyama N, Kagami S, Ichikawa Y,
Miyatake H, Asahi K, Phys Lett A, 376(2012)1924; doi: 10.1016/j.physleta.2012.04.043
    34.  Ichikawa Y, Chikamori M, Ohtomo Y, Hikota E, Sakamoto Y, Suzuki T, Bidinosti C P, Inoue T, Furukawa T, Yoshimi A, Suzuki K, Nanao T,
Miyatake H, Tsuchiya M, Yoshida N, Shirai H, Ino T, Ueno H, Matsuo Y, Fukuyama T, Asahi K, European Physical Journal: Web of Conferences, 66 (2014)05007.
    35.  Sato T, Study of spin maser comagnetometry for the Xe atomic EDM experiment, Thesis, Tokyo Institute of Technology, 2016;
(in preparation for publication)
    36.  Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R,
Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D, (ACME Collaboration), Science, 343(2014)269-272.
    37.  Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A, Nature, 473(2011)493-496.