ASIAN JOURNAL OF PHYSICS

An International Peer Reviewed Research Journal
Frequency : Monthly,
ISSN : 0971 – 3093
Editor-In-Chief (Hon.) :
Dr. V.K. Rastogi
e-mail:[email protected]
[email protected]

AJP ISSN : 0971 – 3093
Vol 25, No 4 & 5, April-May, 2016

25th Anniversary Year of AJP-2016

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 501-510

Resolution enhancement in digital holographic microscopy and tomography system

 

Balasubramani Vinoth, Yu-Chih Lin, Xin-Ji Lai, and Chau-Jern Cheng*
Institute of Electro-Optical Science and Technology,
National Taiwan Normal University, Taipei 11677, Taiwan

Dedicated to Prof FTS Yu

In digital holographic microscopy (DHM) achieving phase sensitivity is signifcant, which plays a major role in deciding the accuracy of the system. Our study elucidates the achievement of axial sub-nanometer precision with improvement in net phase sensitivity by instantaneous use of phase reference and temporal averaging techniques in DHM. To enhance the spatial resolution we implemented a synthetic aperture (SA) DHM system. The use of spectrum normalization method in SA-DHM system has helped to increase the spatial resolution and the phase sensitivity of the system. We also demonstrated the 3D imaging method based on sectional imaging technique to measure the refractive index variation between the spliced end of single mode fber and the polarization maintaining fber with digital holographic microscopy and tomography system (DHMT).© Anita Publications. All rights reserved.
Keywords: Digital holographic microscopy (DHM), Spatial resolution, Phase sensitivity, Tomography system.

Resolution enhancement in digital holographic microscopy and tomography system.pdf

Balasubramani Vinoth, Yu-Chih Lin, Xin-Ji Lai, and Chau-Jern Cheng

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 511-519

Recent advances in fringe-adjusted joint transform correlation based optical pattern recognition techniques

 

Paheding Sidike1, Vijayan K Asari1 and Mohammad S Alam2

1Department of Electrical & Computer Engineering, University of Dayton, Dayton, OH 45469 USA

2Department of Electrical & Computer Engineering, University of South Alabama, Mobile, AL 36688 USA

In real-time Optical Pattern Recognition (OPR), Fringe-adjusted Joint Transform Correlation (FJTC) has shown very promising performance compared to alternate JTCs. This paper provides a systematic review of the recent advances in the FJTC based OPR algorithms, including the classical FJTC, Phase-encoded FJTC (PFJTC), Shifted Phased-encoded FJTC (SPFJTC), and Logarithmic FJTC (LFJTC). We also evaluate their performance on the face recognition using three standard face recognition databases, namely the Yale face database, the extended Yale-Bdatabase and CMU-AMPdatabase. Test results show that the LFJTC provides superior performance compared to the state-of-the-art FJTC based OPR methods.

Key words: Optical Pattern Recognition (OPR), Fringe-adjusted Joint Transform Correlation (FJTC), Phase-encoded FJTC (PFJTC), Shifted Phased-encoded FJTC (SPFJTC), Logarithmic FJTC (LFJTC). © Anita Publications. All rights reserved.

Total Refs: 29

    1.    Vander Lugt A B, IEEE Trans Inf Theory, IT-10(1964)139-146.
    2.    Weaver C S, Goodman J W, Appl Opt, 5(1966)1248-1249.
    3.    Yu F T S, Lu X J, Opt Commun, 52(1984)10-16.
    4.    Yu F T S, Song Q W, Cheng Y S, Gregory D A, Appl Opt,29(1990)225-232.
    5.    Javidi B, Kuo C, Appl Opt, 27(1988)663-665.
    6.    Yu F T S, Li C, Yin S, Opt Eng, 37(1998)52-57; doi: 10.1117/1.601855.
    7.    Tang Q, Javidi B, Appl Opt, 32(1993)5079-5088..
    8.    Johnson F T J, Barnes T H, Eiju T, Haskell T G, Matsuda K, Opt Eng, 30(1991)1947-1957.
    9.    Alam M S, Karim M A, Appl Opt, 32(1993)4351-4356.
    10.    Yu F T S, Cheng F, Tagata T, Gregory D A, Appl Opt, 28(1989)2988-2990.
    11.    Hahn W B, Flannery D L, Opt Eng, 31(1992)896-905.
    12.    Alam M S, Karim M A, Appl Opt, 32(1993)4344-4350.
    13.    Alam M S, Karim M A, Opt Eng, 33(1994)1610-1617. 
    14.    Alam M S, Chen X W, Karim M A, Opt Eng, 37(1998)138-143  
    15.    Zhang S, Karim M A,Appl Opt, 38(1999)7228-7237.
    16.    Sidike P, Asari V K,Alam M S, Proc. SPIE: Image Processing: Machine Vision Applications Vii, 9024(2014) 90240C.
    17.    Sidike P, Aspiras T, Asari V K, Alam M S, Proc SPIE:Optical Pattern Recognition Xxv, 9094(2014)90940F.
    18.    Wang Q, Liu S, Optik – International Journal for Light and Electron Optics, 121(2010)1824-1830.
    19.    Sidike P, Alam M S, Opt Eng, 52(2013)103108; doi:10.1117/1.OE.52.10.103108
    20.    Leonard I, Alfalou A, Alam M S, Arnold-Bos A, Opt Eng, 51(2012)098201; doi:10.1117/1.OE.51.9.098201
    21.    Alam M S, Rahman M M, Appl Opt, 41(2002)7456-7463.
    22.    Alam M S, Ochilov S, Appl Opt, 49(2010)B18-B25.
    23.    Cherri A K, Alam M S, Appl Opt, 40(2001)1216-1225.
    24.    Haider M R, Islam M N, Alam M S, Khan J F,  Opt Commun, 248(2005)69-88. 
    25.    Alam M S, Opt Eng, 34(1995)3208-3216.
    26.    Available at: http://cvc.yale.edu/projects/yalefaces/yalefaces.html, September 1997.
    27.    Available at: http://cvc.yale.edu/projects/yalefacesB/yalefaces B. html, May 2001.
    28.    Liu X, Chen T, Kumar B V K V,  Pattern Recognition, 36(2003)313-328.
    29.    Kumar B V K V, Hassebrook L, App Opt, 29(1990)2997-3006.

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 533-554

Active and tunable near-infrared hyperbolic metamaterials

 

Joseph Smalley1, Conor T Riley2, Felipe Vallini1 , Donald J Sirbuly2, Zhaowei Liu1,Yeshaiahu Fainman1

1Department of Electrical and Computer Engineering, UC San Diego
2Department of NanoEngineering, UC San Diego


Dedicated to Prof FTS Yu

Hyperbolic metamaterials (HMMs) are metal-dielectric composite materials that exhibit hyperbolic dispersion for electromagnetic waves. The extreme anisotropy and broadband optical density of states associated with hyperbolic dispersion enable enhanced spontaneous emission rates and nonlinear processes, as well as guiding of light below the diffraction limit. While promising for next-generation nanophotonic devices and circuits, the behavior of passive HMMs are limited by fixed properties and high dissipation rates. Therefore, HMMs with active components for tunable properties and loss-compensation have become a subject of intense research. In this review, we investigate active and tunable HMM in the near-infrared frequency regime. We review HMMs based on indium gallium arsenide phosphide (InGaAsP) multiple quantum wells (MQW), a gain material commonly used in lasers for communication systems, as well as HMMs based on aluminum-doped zinc oxide (AZO), a transition conducting oxide with synthesis-dependent properties. We also offer an outlook on circuit-level applications of active, near-infrared HMM. © Anita Publications. All rights reserved.

Keywords: Photonics, Metamaterials, Nanophotonic devices, Mulitple quantum wells (MQW)

1 Introduction

Photonics is the scientific and engineering discipline devoted to the generation, transmission, processing, and detection of light. Fueling photonics are fundamental questions rooted in human curiosity along with practical questions rooted in human wants and needs. Photonics combines classical electromagnetism and condensed matter physics, with engineering practices, enabling the global fiber-optic communication system, energy-efficient illumination, and devices for sensing disease and pollution. Increasingly, the interaction of light with materials at the nanoscale has become more accessible and better understood. Nanoscale photonics, or herein simply, nanophotonics, focuses on these interactions, and combines the tools of nanotechnology with the already interdisciplinary scope of photonics.
Moore’s Law  [1] describes the revolutionary process in which the characteristic length scale of transistors was reduced from over 10 μm to 5 nm, between the 1960s and today, resulting in the reduction of per-transistor price from 5 dollars to less than one billionth of one dollar  [2]. Guided by the International Technology Roadmap for Semiconductors, the information processing and storage capacity of human civilization has increased exponentially  [2,3]. Photonics undoubtedly helped enable the electronics revolution through photo-lithography machines with ever increasing resolution. However, because the ultimate speed limit of photons far exceeds that of electrons, there has also been a steady trend to reduce the characteristic length scale of photonic devices themselves  [4]. Traditionally, the dimensions of optical components, such as cavities and waveguides, have been limited to the order of the wavelength of operation. Nanophotonic devices have emerged, however, with sizes below the diffraction limit of light.

__________________________________________

Corresponding author :
e-mail:[email protected] (Yeshaiahu Fainman)

References

    1.    Moore G E, Cramming more components onto integrated circuits, Electronics, 114–117 (1965). 
    2.    Arden W, Brillouet M, Cogez P, Graef M, Huizing B, Mahnkopf R, More than Moore (n.d.).
    3.    “ITRS2,” (n.d.).
    4.    E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science (80-. ). 311, 189–193 (2006).
    5.    Maier S, Plasmonics: Fundamentals and Applications (Springer, 2007).
    6.     I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys Rev B 75, 241402 (2007).
    7.     Khajavikhan M., A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature, 482, 204–207 (2012).
    8.     W. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A Pure Appl. Opt. 8, S87–S93 (2006).
    9.     Melikyan A, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 8, 229–233 (2014).
    10.    P. Neutens and P. Van Dorpe, “Integrated plasmonic detectors,” in Active Plasmonics and Tuneable Plasmonic Metamaterials, A. V. Zayats and S. A. Maier, eds. (John Wiley & Sons, Inc., 2013).
    11.    V. Sorger, R. Oulton, R. Ma, and X. Zhang, “Towards integrated plasmonic circuits,” MRS Bull. 728–738 (2012).
12.     “Key technology manufacturing areas,” http://www.aimphotonics.com/key-technology-manufacturing-areas/.
13.     D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
14.     T. MacKay and A. Lahktakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).
1    5.    E. E. Narimanov and A. V. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9, 214–216 (2015).
16.    Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,Opt Express, 14, 8247–8256 (2006).
17.    C. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 63001 (2012).
18.    A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 948–957 (2013).
19.    L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40(2015) 1–40.
20.    A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry., Opt Express, 22, 10987–94 (2014).
21.    Y. Sun, Z. Zheng, J. Cheng, G. Sun, and G. Qiao, “Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance.,” Opt Express, 23, 6370–8 (2015).
22.    D. Lu, J. Kan, E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9, 48–53 (2014).
23.    K. Sreekanth, K. Krishna, A. De Luca, and G. Strangi, “Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials,” Sci. Rep. 4, 6340 (2014).
24.    T. Galfsky, H. Krishnamoorthy, W. Newman, E. Narimanov, Z. Jacob, and V. Menon, “Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction,” Optica 2, 62–65 (2015).
25.    V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys Rev B 71, 201101 (2005).
26.    X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
27.    J. Pendry, “Negative refraction makes a perfect lens,” Phys Rev Lett 85, 3966–3969 (2000).
28.    X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
29.    N. Zheludev and Y. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
30.    Bhattacharya P, Properties of Lattice-Matched and Strained Indium Gallium Arsenide (Institution of Engineering and Technology), 1993.
    31.    M. Willander, Zinc Oxide Nanostructures: Advances and Applications (Pan Stanford, 2014).
    32.    P. Johnson, R. Christy, “Optical constants of noble metals,” Phys Rev B, 6(1972)4370-4379.
    33.    C. Riley, T. Kieu, J. Smalley, S. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition, Phys. Stat. Sol. RRL 8, 948–952 (2014).
    34.    J. Smalley, F. Vallini, S. Shahin, B. Kante, and Y. Fainman, “Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials,” Opt. Mat. Express 5, 2300–2312 (2015).
    35.    Smalley J, Vallini F, Kante B, Fainman Y, Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies, Opt Express, 22(2014)21088-21105. (2014).
    36.     C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.,” Small, 12, 892–901 (2015).
    37.        S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” J. Exp. Theor. Phys. 2, 466 (1956).
    38.    V. Podolskiy, “Anisotropic and hyperbolic metamaterials,” in Tutorials in Metamaterials, M. Noginov and V. Podolskiy, eds. (CRC Press, 2012), pp. 163–207.
    39.    Zenneck J, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie, Ann Phys, 328 (1907)846-866.
    40.        M. Blaber, M. Arnold, and M. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113, 3041–3045 (2009).
    41.        M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493 (1985).
    42.        E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91, 634–643 (1987).
    43.        I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings, Phys. Rev. B, 65, 165432 (2002).
    44.    L. Coldren, S. Corzine, and M. Masanovic, Gain and current relations, in Diode Lasers and Photonic Integrated Circuits, (Wiley, 2012), pp. 157–246.
    45.    J. Smalley, Q. Gu, and Y. Fainman, Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers, IEEE J Quant Elect, 50, 175–185 (2014).
    46.    G. Agrawal, N. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).
    47.    N. Ashcroft, N. Mermin, “Electron levels in a periodic potential,” in Solid State Physics (Brooks/Cole, 1976), pp. 130–150.
    48.    J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).
49.    P. Yeh, “Optics of periodic layered media, in Optical Waves in Layered Media (John Wiley & Sons, Inc., 2005), pp. 118–143.
    50.        A. Yariv, and P. Yeh, “Wave propagation in periodic media,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 539–601.
    51.        J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 46618 (2006).
    52.        J. S. Smalley, F. Vallini, B. Kante, and Y. Fainman, “General Conditions for Lossless Propagation in Near-Infrared Hyperbolic Metamaterial Waveguides,” in CLEO: 2015 (OSA, 2015), p. FM3C.5.
    53.        J. S. T. Smalley, F. Vallini, B. Kante, S. Shahin, C. Riley, and Y. Fainman, “Gain-enhanced hyperbolic metamaterials at telecommunication frequencies,” in SPIE 9544, Metamaterials, Metadevices, and Metasystems 2015 (2015).
    54.        J. S. T. Smalley, F. Vallini, S. Montoya, E. E. Fullerton, and Y. Fainman, “Practical realization of deeply subwavelength metal-dielectric nanostructures based on InGaAsP,” in Proc. SPIE 9544, Metamaterials, Metadevices, and Metasystems 2015 (2015).
    55.        G. Naik, V. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    56.    C. H. Henry, Quantum Well Lasers (Elsevier, 1993).
    57.        A. Mizrahi, V. Lomakin, B. Slutsky, M. Nezhad, L. Feng, and Y. Fainman, Low threshold gain metal coated laser nanoresonators, Opt Lett, 33(2008)1261-1263.
    58.    Smalley J, Puckett M, Fainman Y, Invariance of optimal composite waveguide geometries with respect to permittivity of the metal cladding, Opt Lett, 38(2013)5161-5164.
    59.        S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Self-powered nanowire devices., Nat. Ttelecommunication wavelength using Ga-doped ZnO.,” Opt Express, 23,  (2015) 32555–60.
60. C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
61.     A. Wei, L. Pan, and W. Huang, “Recent progress in the ZnO nanostructure-based sensors,” Mater. Sci. Eng. B 176, 1409–1421 (2011).
62.     P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
63.     M. Hiramatsu, “Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 16, 669 (1998).
64.     G. Naik, V. Shalaev, and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys Status Solidi RRL 4, (2010).
65.     J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907–4601907 (2013).
66.     H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102, 171103 (2013).
67.     G. Garcia, R. Buonsanti, A. Llordes, E. L. Runnerstrom, A. Bergerud, and D. J. Milliron, “Near-Infrared Spectrally Selective Plasmonic Electrochromic Thin Films,” Adv. Opt. Mater. 1, 215–220 (2013).
68.     S. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
69.     A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited],” Opt. Mater. Express 1, 883 (2011).
70.     A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications.,” Sci. Rep. 4, 6415 (2014).
71.     D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21, 448–455 (2011).
72.      Naik G, Liu J, Kildishev A, Shalaev V, Boltasseva A, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, Proc Nat Acad Sci, 109(2011)8834-8838; doi: 10.1073/pnas.1121517109
73.     Kalusniak S, Orphal L,  Sadofev S, Demonstration of hyperbolic metamaterials at telecommunication wavelength using Ga-doped ZnO, Opt Express, 23(2015)32555-60.
74.    Hoffman A, Alekseyev L, Howard S, Franz K, Wasserman D, Podolskiy V, Narimanov E, Sivco D, Gmachl C, Negative refraction in semiconductor metamaterials, Nat Mater, 6(2007)946-950.
75.     X. Ni, S. Ishii, M. Thoreson, V. Shalaev, S. Han, S. Lee, and A. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt Express, 19, 25242–25254 (2011).
76.     C. Argyropoulos, N. Estakhri, F. Monticone, and A. Alu, “Negative refraction, gain, and nonlinear effects in hyperbolic metamaterials,” Opt Express, 21, (2013). 15037–15047
77.     R. Savelev, I. Shadrivov, P. Belov, N. Rosanov, S. Fedorov, A. Sukhorukov, and Y. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys Rev B 87, 115139 (2013).
78.     R. Savelev, I. Shadrivov, and Y. Kivshar, “Wave scattering by metal-dielectric multilayer structures with gain,” JETP Lett. 100, 831–836 (2014).
79.     L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials, Opt Express, 22, 4301–4306 (2014).
80.     J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villaneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J Quant Elect 33, (1997) 341–348.
81.     Segovia P, Marino G, Krasavin A V, Olivier N, Wurtz G A, Belov P A, Ginzburg P, A. V. Zayats, “Hyperbolic metamaterial antenna for second-harmonic generation tomography, Opt Express, 23, 30730 (2015).
82.     W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510 (1961).
83.     T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3, 77–184 (1999).
84.     A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device.,” Nat. Nanotechnol. 9, 126–30 (2014).
85. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics., Opt Express, 21 Suppl 1, A96–110 (2013).
86.     Xu T, Lezec H, Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial, Nat Comm, 5 (2014) 4141.

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 557-566

DMD gratings and its application in tunable fiber lasers

 

Fei-jun Song1 , Xiao Chen1, Feng Xiao2,and Kamal Alameh2

1 College of Science, Minzu University of China, Beijing 100081, China

2 Electron Science Research Institute, Edith Cowan University, Joondalup, WA, 6027, Australia

Dedicated to Prof FTS Yu

Digital micromirror device (DMD), a kind of widely-used spatial light modulator is applied in tunable fiber lasers as wavelength selector. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55-inch DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems. © Anita Publications. All rights reserved.

Keywords: OCIS codes: 050.1950, 060.3510

References

  1.   Dana Dudley, Walter Duncan, John Slaughter, “Emerging digital micromirror device (DMD) application, SPIE, 4985, (2003) 14-20.

  2.   Lim, Yongjun, Hahn Joonku, Lee Byoungho, “Phase-conjugate holographic lithography based on micromirror array recording,” Appl Optics, 50 (2011)68-74.

  3.   Huebschman M L, Munjuluri Garner, H R, “Dynamic holographic 3-D image projection, ” Opt Express, 11(2003) 437-445.

  4.   Friedman PM, Skover GR, Payonk G, Kauvar ANB, Geronemus RG, “3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology, ” Dermatologic Surgery, 28(3): 199-204 (2002).

  5.   Cha S D, Lin P C, Zhu L J, Sun P C, Fainman Y, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Optics,  39(16): 2605-2613 (2000)

  6.   Fukano T, Miyawaki A, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Optics 42(19): 4119–4124 (2003)

  7.   Woojin Shin, Bong-Ahn Yu, YeungLak Lee, Tae Jun Yu, Tae JoongEom, Young-Chul Noh, Jongmin Lee, and Do-KyeongKo, “Tunable Q-switched erbium-doped fiber laser based on digital micro-mirror array”, Opt. Express, 14(12): 5356-5364 (2006)

  8.   Chen X, Wang Y Q, Huang K Z, Song F J, Chen G X, Sang X Z, Yan B B, Zhang Y, Xiao F, Alameh K, “Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor, ” CLEO:2012 Laser science to photonic applications, JW2A.59, 2012

  9.   http://www.ti.com/analog/docs/memsmidmodlevel.tsp?sectionId=651&tabId=2447

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 567-571

Testing Retina of Cataract Eye Using Speckle Pattern

 

Suganda Jutamulia1, Erning Wihardjo2 and Joewono Widjaja3

1University of Northern California, Rohnert Park, CA 94928, USA

2KridaWacana Christian University, Jakarta,11470, Indonesia

3Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand

Dedicated to Prof FTS Yu

We are currently performing the theoretical study and developing the design of laser diode device for testing the retina of a cataract eye. The operation is based on the speckle generated on the retina by the cataract lens, when the cataract lens is illuminated with a coherent laser light. © Anita Publications. All rights reserved.

Keywords: Retina, Cataract lens,UV light, Speckles

References

  1.   Green D G, Testing the vision of cataract patients by means of laser-generated interference fringes, Science, 168,  (1970)1240-1242.

  2.   Jutamulia S, Gheen G, Diffraction pattern on retina for eye testing, Opt Eng,  34(1995)780-784.

  3.   Wikipedia, “Laser safety,” https://en.wikipedia.org/wiki/Laser_safety (2016).

  4.   Jutamulia F Z, Laser module for acupuncture, Asian J Phys, 24(2015)237-242.

Testing Retina of Cataract Eye Using Speckle Pattern.pdf

Suganda Jutamulia, Erning Wihardjo and Joewono Widjaja

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 573-581

Transport of intensity and phase during beam propagation

 

Partha P Banerjee

Department of Electro-Optics and Photonics, University of Dayton, Dayton, OH 45469, USA

Dedicated to Prof FTS Yu

Propagation of profiled beams are analyzed using the coupled equations involving the amplitude (or intensity) and phase which result from the underlying wave equation.  It is shown that the transport of intensity equation, which provides a convenient means of calculating the phase and is an alternative to conventional holography, is equivalent to one of these coupled equations, and is a restatement of the conservation of energy. Other applications of the equations describing the propagation of intensity and phase are also discussed. © Anita Publications. All rights reserved.

References

  1.   Banerjee P P, Poon T-C , Principles of Applied Optics, (CRC Press), 1991.

  2.   Banerjee P P, Korpel A, Lonngren K, Self-refraction of capillary-gravity waves, Phys of Fluids, 26(1983)2393-2398; doi.org/10.1063/1.864423

  3.   Korpel A, Banerjee P P, A heuristic guide to nonlinear dispersive wave equations and soliton type solutions, Proc IEEE, 72(1984)1109-1130.

  4.   Banerjee P P, Basunia M, 3D Imaging of amplitude objects embedded in phase objects using transport of intensity, Proc SPIE, 959(2015)959804-6.

  5.   Teague M, Deterministic phase retrieval: a Green’s function solution, J Opt Soc Am A, 73(1983)1434-1441.

  6.   Streibl N, Phase imaging by the transport equation of intensity, Opt Comm, 49(1984)6-10.

  7.   Memarzadeh S, Nehmetallah G, Banerjee P, Noninterferometric tomographic reconstruction of 3D static and dynamic phase and amplitude objects, Proc SPIE, 9117(2014)91170M-9.

  8.   Zou C, Chen V, Asundi A, Comparison of digital holography and transport of intensity for quantitative phase contrast imaging, in Fringe, W Osten, ed, (Springer), 2013, pp 137-142.

  9.   Schnars U, Juptner W, Digital Holography, (Springer), 2005.

10.   Nehmetallah G, Banerjee P P, Applications of digital and analog holography in three-dimensional imaging, Adv Opt Photon,  4(2012)472-553.

11.   http://www2.ph.ed.ac.uk/~wjh/teaching/mo/tutorials/scalar-solutions.pdf.

12.   Ghiglia D C, Romero L A, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J Opt Soc Am A, 11(1994) 107-117.

13.   Born M, Wolf E, Principles of Optics, 7th edn (Cambridge University Press).

14.   Goodman J, Introduction to Fourier Optics, 3rd edn, (Publisher: W H Freeman), 2004.

15.   Laskin A, Laskin V, Beam shapes to generate uniform laser light sheet and linear laser spots, Proc SPIE, 8843 8843 OC (2013).

16.   Ye J, Lee K, Park I, Kwon J, Laser Beam Shaping Using Hollow Optical Fiber and Its Application in Laser Induced Thermal Printing, J Opt Soc Korea, 13(2009)146-151.

17.   Abdelaziez Y, Banerjee P P, Evans D R, Beam shaping using acousto-optic devices with feedback, Appl Opt, 44(2005)3473-3481.

18.   Akhmanov S, Sokhorukov A, Khokhlov R, Self-focusing and self-trapping of intense optical beams in a nonlinear medium, Sov Phys JETP, 23(1966)1025-1033.

19.   Roddier C, Roddier F, Wavefront reconstruction from defocused images and the testing of ground based optical telescopes, J Opt Soc Am A, 10(1993)2277-2287.

20.   Nugent K, Paganin D, Barty A, Phase determination of a radiation wave field, US Patent, 6885442 B1 (2005).

21.   Cheney W, Kincaid D, Numerical Mathematics and Computing, 7th edn (Brookes-Cole), 2012.

22.   Abeywickrema U, Banerjee P P, Banerjee N T, Holographic assessment of self-phase modulation and blooming in a thermal medium, Appl Opt, 54(2015)2857-2865.

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 583-587

Thermo-optical property and frequency dispersion of lead barium niobate single crystal

 

 

Chunlai Li1, Ruyan Guo2*, and Amar S Bhalla2

1Shenzhen Mileseey Technology Co. LTD, Shenzhen, China 518000

2Department of Electrical and Computer Engineering

University of Texas at San Antonio, SanAntonio, Texas 78249, USA

Dedicated to Prof FTS Yu

Frequency dependent thermo-optic coefficients of relaxor ferroelectric Pb1 – xBaxNb2O6, 1–x = 0.57 (PBN57) were measured at several optical wavelengths, 694nm, 633nm, 535nm, and 450nm. The thermo-optical coefficients are expressed in three terms describing relaxor-type diffusive phase transitions. The significance of the polarization term coming from the interaction among polar regions is discussed and confirmed, after comparing with the thermo-optic properties of PZN-0.12PT(0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3) normal-like ferroelectric crystal. © Anita Publications. All rights reserved.

Keywords: Thermo-optic coefficients,Nonliner optical devices, spontaneous polarization, Transverse dielectric permittivity, Electrooptic effect

References

  1.   Tsay Y F, Bendow B, Mitra S S, Theory of the temperature derivative of the refractive index in transparent crystals. Phys Rev B, 8(1973)2688-2696.

  2.   Ghosh G,Thermal optic coefficients of LiNbO3, LiIO3, and LiTaO3 nonlinear crystals, Opt Lett, 19(1994)1391-1393.

  3.   Zysset B, Biaggio I, Gunter P, Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence, J Opt Soc Am B, 9(1992)380-386.

  4.   Guo R, Bhalla A S, Cross L E, Electric field-induced orthogonal polarization switching in morphotropic phase boundary Pb0.57Ba0.43Nb2O6 (PBN57) single crystals, Appl Opt, 29(1990)904-906.

  5.   Li C, Guo R, Bhalla A S, Optical frequency dispersion near ferroelectric relaxor phase transition in Lead Barium Niobate crystal, Ferroelectrics, 339(2006)103-113.

  6.   Guo R, Bhalla A S, Randall C A, Chang Z P, Cross L E, Polarization mechanisms of morphotropic phase boundary Lead barium niobate (PBN) compositions. J Appl Phys, 67(1990)1453-1460.

  7.   Bhalla A S, Guo R, Cross L E, Burns G, Dacol F H, Neurgaonkar R R, Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6O6: Polarization effects, Phys Rev B, 36(1987)2030-2035.

  8.   Bhalla A S, Guo R, Cross L E, Burns G, Dacol F H, Neurgaonkar R R, Glassy polarization in the ferroelectric tungsten bronze (Ba, Sr) Nb2O6J Appl Phys, 71(1992)5591-5595.

  9.   Tsukada S, Hidaka Y, Kojima S, Bokov A A, Ye Z-G, Development of nanoscale polarization fluctuations in relaxor-based (1–x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 ferroelectrics studied by Brillouin scattering, Phys Rev B, 87(2013) 014101;doi.org/10.1103/PhysRevB.87.014101

10.  Yao X, Chen Z, Cross L E, Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics. J Appl Phys, 54(1983)3399-3403.

 

 Asian Journal of Physics

Vol. 25 No 4 & 5 (2016) 589-598

Visualization and quantification of light sources spectra with a simple cell phone based spectroscopic system

 

Rocío Espinosa-Gutierrez1, Ignacio Moreno1,*, Pascuala Garcia-Martinez2, Jenaro Guisasola3 and Jesús Carnicer4

1 Department of Materials Science, Optics and Electronics Technology, University Miguel Hernandez, 03202, Elche, Spain.

2 Department of Optics, University of Valencia, 45100, Burjassot, Spain.

3 Department of Applied Physics, University of Basque Country, 20014, San Sebastian, Spain.

4 Pedagogical Department, MUDIC-VBS-CV, 03300, Orihuela (Alicante), Spain.

In this paper, we present the implementation of a simple and low cost optical spectroscopic system based on the use of a common cell phone camera. It is shown how it can be useful for developing both qualitative spectra visualizations, to but also quantitative measurements. Therefore, it can be useful for application in demonstrations in science museums, as well as for introductory courses of Physics. In addition, it is also useful  to measure wavelengths in a very simple manner.We show results with different gas-discharge lamps, lasers, LEDs or filament bulbs. © Anita Publications. All rights reserved.

Total Refs: 19

    1.    Bybee T., Towards an Understanding of Scientific Literacy, W. Graeber and C. Bolte,Edts., Scientific Literacy, Kitel: IPN., 1997. Institut für die Pädagogik der Naturwissenschaften (IPN): Kiel, Germany.
   2.   http://www.mudic.es/Museo Didáctico e Interactivo de Ciencias de la Vega Baja del Segura de la Comunidad Valenciana [Internet].Orihuela (Alicante, Spain): MUDIC-VBS-CV; 2012 [visited 2016March 21].
   3.    http://www.light2015.org/Home.html: International Year of Light [visited 2016 March 21]
   4.    Tegmark M. and Archibald J.,100 Years of Quantum Mysteries.Scien. Am.284(2001) 68-75.
   5.    Barreiro J.J., Pons A., Barreiro J.C., Castro-Palacio J.C. and Monsoriu J.A.,Diffraction by electronic components of everyday use.Am. J. Phys. 82(2014) 257-261
   6.   Oronato P., Malgieri M. and Ambrosis A.,Measuring the hydrogen Balmer series and Rydberg’s constant with a homemade spectrophotometer,Eur. J. Phys.36(2015)058001; (http://iopscience.iop.org/0143-0807/36/5/058001)
  7.  Pons A., Garcia-Martinez P., Barreiro J.C. and Moreno I.,Learning Optics using a smart-phone, Proceedings SPIE 9289 (2014) 92892P; doi:10.1117/12.2070753
    8.    Chevrier J., Madani L., Ledenmat S., and Bsiesy A., Teaching classical mechanics using smartphones,Phys. Teach.51(2013) 376; doi.org/10.1119/1.4818381
    9.    Thoms L.J., Colicchia G. and Girwidz R.,Color reproduction with a smartphone,Phys. Teach.51(2013) 440; doi.org/10.1119/1.4820866
    10.   Hossain A., Canning J., Cook K. and Jamalipour A., Smartphone laser beam spatial profiler,Opt. Lett.40(2015) 5156-5159
    11.   Smith Z.J., Kaiqin C., Espenson A.R., Rahimzadeh M., Gryshuk A., Molinaro M., Dwyre D.M., Lane S., Matthews D. and Wachsmann-Hogiu S.,Cell-phone-based platform for biomedical device development and education applications,PLoS One 6(2011) 17150; doi.org/10.1371/journal.pone.0017150

    12.   Gallegos D., Long K.D., Yu H., Clark P.P., Lin Y., George S., Nath P. and Cunninghan B.T.,Label-Free biodetection using a smartphone,Lab Chip13(2013) 2124-2132
    13.   Scheeline A.,Teaching, learning, and using spectroscopy with commercial, off-the-shelf technology,Focal Point64(2010) 256-268
    14.   http://www.photonicsexplorer.eu, Eyesvzw, Belgium visited 2016 March 21.. Wadsworth Publishing Co Inc
    15.   Serway R.A. and Jewett Jr J.W.,Diffraction patterns and polarization, pp. 1169-1174inPhysics for Scientists and Engineers. 9thEdt. Boston (USA), 2014.
    16.   Trantham K. and Reece T.J.,Demonstration of the Airy disk using photography and simple light sources, Am. J. Phys.83(2015) 928-934
    17.   Brown D., Tracker Video Analysis and Modeling Tool for Physics Education. Available from: http://www.physlets.org/tracker/
    18.   Yurumezoglu K., Isik H., Arikan G. and Kabay G.,Teaching the absorption of light colours using an artificial rainbow,Phys. Education 50(2015) 402-409
    19.   Trindade, A., Falcão, B., Carramate, L.F.N.D., Marques, M.I.S.F., Ferreira, R. A. S., and André P.S., Low-cost spectrograph based on a WebCam: A student project, Int. J. Elect. Eng. Ed.51 (2014) 1-11; http://dx.doi.org/10.7227/IJEEE.51.1.1