Asian Journal of Physics Vol 31, Nos 9 – 10 (2022) 985-998

Hyperspectral imaging and its applications: An Overview

Sravan Kumar Sikhakolli1 and Inbarasan Muniraj2
1School of Engineering, S R M AP University, Amaravati- 522 503, India
2Alliance University, Bengaluru- 562 106, India

Recording of the spectral information together with spatial information is useful for many applications. Hyperspectral Imaging (HSI) is a recently developed imaging modality which is capable of recording both the spatial (x, y) and spectral (λ) information of a scene. Thereafter, several applications have been shown using HSI. In this review, we discussed some of the recent implementations of HSI that aimed at addressing several scientific research problems. We also brief about some of the existing types of HSI cameras. In some of the recent works, Deep Learning (DL) frameworks have been extensively used for several HSI related problems. We have provided insights on some of the recent implementations of DL on HSI based problems. © Anita Publications. All rights reserved.
Keywords: Hyperspectral imaging, Deep learning, Biomedical imaging, Spectral imaging
DOI: 10.54955/AJP.31.9-10.2022.985-998

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Ferreira K B, Oliveira A G, Gonçalves A S, Gomes J A, Evaluation of hyperspectral imaging visible/near-infrared spectroscopy as a forensic tool for automotive paint distinction, Forensic Chem, 5(2017)46–52.
  2. [online] Accessed on 06-09-22.
  3. He L, Li J, Liu C, Li S, Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines, IEEE Trans Geosci Remote Sens, 56(2017)1579–1597.
  4. Adam E, Mutanga O, Rugged D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review, Wetl Ecol Manag, 18(2010)281–296.
  5. Edelman G J, Gaston E, Van Leeuwen T G, Cullen P J, Aalders M C, Hyperspectral imaging for non-contact analysis of forensic traces, Forensic Sci Int, 223(2012)28–39.
  6. Mehta N, Shaik S, Devireddy R, Gartia M R. Single-cell analysis using hyperspectral imaging modalities, J Biomech Eng, 140(2018) 020802;
  7. Mishra V K, Kumar S, Shukla N, Image acquisition and techniques to perform image acquisition, Samriddhi – J Phys Sci Eng, 25(2017)21–24.
  8. Ye X, Abe S, Zhang S, Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging, Precis Agric, 21(2020)198–225.
  9. Canty M J, Image analysis, classification and change detection in remote sensing: with algorithms for ENVI/IDL and Python, (CRC Press), 2014.
  10. Behmann J, Acebron K, Emin D, Bennertz S, Matsubara S, Thomas S, Bohnenkamp D, Kuska M T, Jussila J, Salo H, Mahlein A K, Specim I Q, evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection, Sensors, 18(2018)441;
  11. Fowler J E. Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging. In, IEEE international conference on image processing (ICIP) 2014, Oct 27, (pp. 684-688).
  12. Qin J, Chao K, Kim M S, Lu R, Burks T F, Hyperspectral and multispectral imaging for evaluating food safety and quality, J Food Eng, 118(2013)157–171.
  13. Dale L M, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna J A, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review, Appl Spectrosc Rev, 48(2013)142–159,
  14. Kerekes J P, Schott J R, Hyperspectral imaging systems. Hyperspectral data exploitation: Theory and applications. (John Wiley & Sons, Inc), 2007.
  15. Johnson W R, Wilson D W, Fink W, Humayun M S, Bearman G H, Snapshot hyperspectral imaging in ophthalmology, J Biomed Opt, 12(2007)014036:
  16. Lu Y, Perez D, Dao M, Kwan C, Li J, Deep learning with synthetic hyperspectral images for improved soil detection in multispectral imagery. In 2018 9th IEEE annual ubiquitous computing, Electronics & Mobile Communication Conference, (UEMCON), 2018 Nov 8, (pp. 666-672).
  17. Wang Y W, Reder N P, Kang S, Glaser A K, Liu J T, Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches, Nanotheranostics, 1(2017)369–388.
  18. Papeş M, Tupayachi R, Martínez P, Peterson A T, Powell G V, Using hyperspectral satellite imagery for regional inventories: A test with tropical emergent trees in the Amazon Basin, J Veg Sci, 21(2010)342–354.
  19. Singh P, Pandey P C, Petropoulos G P, Pavlides A, Srivastava P K, Koutsias N, Deng K A, Bao Y, Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends, In, Hyperspectral Remote Sensing, (2020)121–146;
  20. Tuşa L, Khodadadzadeh M, Contreras C, Rafiezadeh Shahi K, Fuchs M, Gloaguen R, Gutzmer J, Drill-core mineral abundance estimation using hyperspectral and high-resolution mineralogical data, Remote Sens, 12(2020)1218;
  21. Makki I, Younes R, Francis C, Bianchi T, Zucchetti M. A survey of landmine detection using hyperspectral imaging, ISPRS J. Photogramm. Remote Sens, 124(2017)40–53.
  22. Okwuashi O, Ndehedehe C E, Deep support vector machine for hyperspectral image classification, Pattern Recognit, 103(2020)107298;
  23. Nirmal S, Sowmya V, Soman K P, Open set domain adaptation for hyperspectral image classification using generative adversarial network. In Inventive Communication and Computational Technologies, (Springer, Singapore), 2020, pp 819-827.
  24. Zhou F, Hang R, Liu Q, Yuan X. Hyperspectral image classification using spectral-spatial LSTMs, Neurocomputing, 28(2019)39–47.
  25. Bedini E, The use of hyperspectral remote sensing for mineral exploration: A review, J Hyperspect Remote Sens, 7(2017)189–211.
  26. [online] Accessed on 06-09-22
  27. Munir M T, Yu W, Young B R, Wilson D I, The current status of process analytical technologies in the dairy industry, Trends Food Sci Technol, 43(2015)205–218.
  28. Feng L, Zhu S, Liu F, He Y, Bao Y, Zhang C, Hyperspectral imaging for seed quality and safety inspection: A review, Plant methods, 15(2019)1–25.
  29. Aviara N A, Liberty J T, Olatunbosun O S, Shoyombo H A, Oyeniyi S K, Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage, Journal of Agriculture and Food Research, 8(2022)100288;
  30. Thomas S, Kuska M T, Bohnenkamp D, Brugger A, Alisaac E, Wahabzada M, Behmann J, Mahlein A K, Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective, J Plant Dis. Prot, 125(2018)5–20.
  31. Edelman G, van Leeuwen T G, Aalders M C. Hyperspectral imaging for the age estimation of blood stains at the crime scene, Forensic Science International, 223(2012)72–77.
  32. Forensics with hyperspectral imaging – Specim [online] Accesed on 13 Sept 2022.
  33. Aboughaleb I H, Aref M H, El-Sharkawy Y H, Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer, Photodiagnosis Photodyn Ther, 31(2020)101922;
  34. Ortega S, Halicek M, Fabelo H, Guerra R, Lopez C, Lejeune M, Godtliebsen F, Callico G M, Fei B. Hyperspectral imaging and deep learning for the detection of breast cancer cells in digitized histological images, In Medical Imaging 2020: Digital Pathology, 2020 Mar 16, SPIE, (Vol 11320, pp 206-214).
  35. Kho E, Dashtbozorg B, De Boer L L, Van de Vijver K K, Sterenborg H J, Ruers T J, Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information, Biomed Opt Express, 10(2019)4496–4515.
  36. Aref M, Aboughaleb I H, Youssef A B, El-Sharkawy Y, Novel approach exploiting the hyperspectral imaging system for breast cancer therapy and diagnosis, Archives of Breast Cancer,. 29(2020)189–201.
  37. Aref M H, Aboughaleb I H, El-Sharkawy Y H, Custom optical imaging system for ex-vivo breast cancer detection based on spectral signature, Surg Oncol, 35(2020)547–555.
  38. Lu G, Little J V, Wang X, Zhang H, Patel M R, Griffith C C, El-Deiry M W, Chen A Y, Fei B, Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging for Head and Neck Cancer Detection, Clin Cancer Res, 23(2017)5426–5436.
  39. Halicek M, Little J V, Wang X, Patel M, Griffith C C, El-Deiry M W, Chen A Y, Fei B, Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks, In Optical Imaging, Therapeutics, and Advanced Technology in Head and Neck Surgery and Otolaryngology, 2018 Feb 12, SPIE, (Vol 10469, pp 8-16).
  40. Halicek M, Lu G, Little J V, Wang X, Patel M, Griffith C C, El-Deiry M W, Chen A Y, Fei B, Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging, J Biomed Opt, 22(2017)060503;
  41. Leon R, Martinez-Vega B, Fabelo H, Ortega S, Melian V, Castaño I, Carretero G, Almeida P, Garcia A, Quevedo E, Hernandez J A, Non-invasive skin cancer diagnosis using hyperspectral imaging for in-situ clinical support, J Clin Med, 9(2020)1662;
  42. Jansen-Winkeln B, Barberio M, Chalopin C, Schierle K, Diana M, Köhler H, Gockel I, Maktabi M, Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy, Cancers, 13(2021)967;
  43. Ferris D G, Lawhead R A, Dickman E D, Holtzapple N, Miller J A, Grogan S, Bambot S, Agrawal A, Faupel M L, Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia, J Low Genit Tract Dis, 5(2001)65–72.
  44. Reshef E R, Miller J B, Vavvas D G, Hyperspectral imaging of the retina: A review, Int Ophthalmol Clin, 60(2020) 85–96.
  45. Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin, Diabetes care, 32(2009)2056–2061.
  46. Sorg B S, Moeller B , Donovan O, Cao Y, Dewhirst M W, Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development, J Biomed Opt, 10(2005)044004;
  47. Feng W, Shi R, Zhang C, Liu S, Yu T, Zhu D. Visualization of skin microvascular dysfunction of type 1 diabetic mice using in-vivo skin optical clearing method, J Biomedl Opt, 24(2018)031003;
  48. Hyttinen J, Fält P, Jäsberg H, Kullaa A, Hauta-Kasari M, Oral and dental spectral image database—odsi-db, Appl Sci, 10(2020)7246,
  49. [online], Accessed 06-09-22.
  50. Ozdemir A, Polat K, Deep learning applications for hyperspectral imaging: a systematic review. Journal of the Institute of Electronics and Computer, 28(2020)39–56.
  51. Dalponte M, Ørka H O, Gobakken T, Gianelle D, Næsset E. Tree species classification in boreal forests with hyperspectral data, IEEE Trans Geosci Remote Sens, 51(2012)2632–2645.
  52. Lawrence N. Gaussian process latent variable models for visualisation of high dimensional data, Advances in neural information processing systems. 2003;16.
  53. Archibald R, Fann G. Feature selection and classification of hyperspectral images with support vector machines, IEEE Geoscience and Remote Sensing Letters, 4(2007)674–677.
  54. Kuo B C, Ho H H, Li C H, Hung C C, Taur J S. A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification, IEEE J Sel Top Appl Earth Obs Remote Sens, 29(2013)317–326.
  55. Uddin M P, Mamun M A, Hossain M A, Effective feature extraction through segmentation-based folded-PCA for hyperspectral image classification, Int J Remote Sens, 40(2019)7190–7220.
  56. Johnson R J, Williams J P, Bauer K W, AutoGAD: An improved ICA-based hyperspectral anomaly detection algorithm, IEEE Trans Geosci Remote Sens, 51(2012)3492–3503.
  57. Gao L, Du Q, Zhang B, Yang W, Wu Y, A comparative study on linear regression-based noise estimation for hyperspectral imagery, IEEE J Sel Top Appl Earth Obs Remote Sens, 6(2013)488–498.
  58. Li J, Bioucas-Dias J M, Plaza A, Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning, IEEE Trans Geosci Remote Sens, 48(2010)4085–4098.
  59. Ma L, Crawford M M, Tian J, Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification, IEEE Trans Geosci Remote Sens, 48(2010)4099–4109.
  60. Ham J, Chen Y, Crawford M M, Ghosh J, Investigation of the random forest framework for classification of hyperspectral data, IEEE Trans Geosci Remote Sens, 43(2005)492–501.
  61. Anantharaman R, Velazquez M, Lee Y. Utilizing mask R-CNN for detection and segmentation of oral diseases. In 2018 IEEE international conference on bioinformatics and biomedicine (BIBM), 2018 Dec 3, pp 2197–2204.
  62. Alanazi S A, Kamruzzaman M M, Islam Sarker M N, Alruwaili M, Alhwaiti Y, Alshammari N, Siddiqi M H. Boosting breast cancer detection using convolutional neural network, J Healthc Eng, 2021(2021) Art ID 5528622; Apr 3;2021.
  63. Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention 2015, Oct 5, pp 234–241, Springer.
  64. Wang Z, Hu M, Zhai G. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data, Sensors, 18(2018)1126;
  65. Bi L, Hu G. A Gated Recurrent Units (GRU)-Based Model for the Prediction of Soybean Sudden Death Syndrome with Time-Series Satellite Imagery. In IIE Annual Conference Proceedings 2020, (pp. 658-663). Institute of Industrial and Systems Engineers (IISE).