Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1329-1338

Polarization resolved nonlinear optical microscopy – A review

Naveen Kumar Balla1, Spandana K U2, and Nirmal Mazumder2


Abstract

Nonlinear optical scattering processes like second harmonic generation (SHG), third harmonic generation (THG), and coherent anti-Stokes Raman scattering (CARS) etc. have been extensively used to study surface and bulk properties of a wide variety of samples. In addition, to provide a clear spectral contrast over an often dark background, these scattering processes convey more information about the local structure of the sample which is otherwise only accessible by other complicated and often invasive analytical tools like electronic microscopy for example. Polarization property of the signal provides additional contrast to the above mentioned techniques including Stokes polarimetry. We discuss the polarization properties in nonlinear optical microscopy and its application in various samples. © Anita Publications. All rights reserved.
Keywords: Second harmonic generation (SHG), Third harmonic generation (THG), Coherent anti-Stokes Raman scattering (CARS), Nonlinear optics, Polarization.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Andreana M, Stolow A, Multimodal coherent nonlinear optical microscopy: From biophotonics to geophotonics, Opt Photon News, 25(2014)42-49.
  2. Masters B R, So P T C, Handbook of Biological Nonlinear Optical Microscopy, (Oxford University Press, 2008.
  3. Mittal R, Potma E O, Chemical imaging of biological systems with nonlinear optical microscopy, in Applications of Nanoscience in Photomedicine, (Elsevier Inc.), 2015, pp 49-75.
  4. Shalaev V M, Ying Z C, Nonlinear Optics of Surfaces, in Encyclopedia of Materials: Science and Technology, (Elsevier), 2001, pp 6270-6277.
  5. Huang L, Cheng J-X, Nonlinear optical microscopy of single nanostructures, Annu Rev Mater Res. 43(2013)213–236.
  6. Balla N K, O’Brien M, McEvoy N, Duesberg G S, Rigneault H, Brasselet S, McCloskey D, Effects of excitonic resonance on second and third order nonlinear scattering from few-layer MoS2, ACS Photon, 5(2018)1235-1240.
  7. Kaneshiro J, Okada Y, Shima T, Tsujii M, Imada K, Ichimura T, Watanabe T M, Second harmonic generation polarization microscopy as a tool for protein structure analysis, Biophys Physicobiology, 16(2019)147–157.
  8. Cho M, Ko F K, Renneckar S, Molecular orientation and organization of technical lignin-based composite nanofibers and films, Biomacromolecules, 20(2019)4485–4493.
  9. Park S H, Crystal orientation effects on electronic properties of wurtzite InGaN/GaN quantum wells, J Appl Phys, 91(2002)9904–9908.
  10. Yang M, Cai W, Wang Y, Sun M, Shang G, Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave, Sci Rep, 6(2016)1–10.
  11. Noguchi Y, Lim H, Isoshima T, Ito E, Hara M, Won Chin W, Wook Han J, Kinjo H, Ozawa Y, Nakayama Y, Ishii H, Influence of the direction of spontaneous orientation polarization on the charge injection properties of organic light-emitting diodes, Appl Phys Lett, 102(2013)203306; doi. org/10.1063/1.4807797.
  12. Liu K, Ko E, Kim S, Park J, Hwang C S, Choi J H, Orientation-dependent structural and electronic properties of Ge/a-GeO2 interfaces: First-principles study, J Phys D Appl Phys, 52(2019)155101; doi.org/10.1088/1361-6463/ab014e.
  13. Sun Y, Lo W, Lin S-J, Jee S-H, Dong C-Y, Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin, Opt Lett, 29(2004)2013–2015.
  14. Lazar J, Bondar A, Timr S, Firestein S J, Two-photon polarization microscopy reveals protein structure and function, Nat Methods, 8(2011)684–690.
  15. Yu C H, Langowitz N, Wu H Y, Farhadifar R, Brugues J, Yoo T Y, Needleman D, Measuring microtubule polarity in spindles with second-harmonic generation, Biophys J, 106(2014)1578–1587.
  16. Mazumder N, Kao F J, Stokes polarimetry-based second harmonic generation microscopy for collagen and skeletal muscle fiber characterization, Lasers Med Sci, 35(2020)1–7.
  17. Boyd R W, Chapter 5 – Molecular Origin of the Nonlinear Optical Response BT -in Nonlinear Optics, 3rd edn, (Academic Press), 2008, 253–275.
  18. Chen S Y, Van Der Meer B W, Theory of two-photon induced fluorescence anisotropy decay in membranes, Biophys J, 64(1993)1567–1575.
  19. Bidault S, Brasselet S, Zyss J, Coherent control of the optical nonlinear and luminescence anisotropies in molecular thin films by multiphoton excitations, Opt Lett, 29(2004)1242–1244.
  20. Schön P, Munhoz F, Gasecka A, Brustlein S, Brasselet S, Polarization distortion effects in polarimetric two-photon microscopy, Opt Express, 16(2008)20891–20901.
  21. Mojzisova H, Olesiak J, Zielinski M, Matczyszyn K, Chauvat D, Zyss J, Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA, Biophys J, 97(2009)2348–2357.
  22. Blacker T S, Nicolaou N, Duchen M R, Bain A J, Polarized two-photon absorption and heterogeneous fluorescence dynamics in NAD(P)H, J Phys Chem B, 123(2019)4705–4717.
  23. Ferrand P, Gasecka P, Kress A, Wang X, Bioud F-Z, Duboisset J, Brasselet S, Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores, Biophys J, 106(2014)2330–2339.
  24. Campagnola P J, Millard A C, Terasaki M, Hoppe P E, Malone C J, Mohler W A, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues, Biophys J, 82(2002)493–508.
  25. Barad Y, Eisenberg H, Horowitz M, Silberberg Y, Nonlinear scanning laser microscopy by third harmonic generation, Appl Phys Lett, 70(1997)922–924.
  26. Zimmerley M, Mahou P, Débarre D, Schanne-Klein M C, Beaurepaire E, Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy, Phys Rev X, 3(2013)011002; doi.org/10.1103/PhysRevX.3.011002.i
  27. Cheng J-X, Xie X S, Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine, Science, 350(2015) aaa8870; doi. 10.1126/science.aaa8870.
  28. Hofer M, Balla N K, Brasselet S, High-speed polarization-resolved coherent Raman scattering imaging, Optica, 4(2017)795–801.
  29. Bioud F-Z, Gasecka P, Ferrand P, Rigneault H, Duboisset J, Brasselet S, Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy, Phys Rev A, 89(2014)13836; doi.org/10.1103/PhysRevA.89.013836.
  30. Gasecka P, Jaouen A, Bioud F-Z, B de Aguiar H, Duboisset J, Ferrand P, Rigneault H, Balla N K, Debarbieux F, Brasselet S, Lipid order degradation in autoimmune demyelination probed by polarized coherent Raman microscopy, Biophys, 113(2017)1520–1530.
  31. Cleff C, Gasecka A, Ferrand P, Rigneault H, Brasselet S, Duboisset J, Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering, Nat Commun, 7(2016)11562; doi. org/10.1038/ncomms11562.
  32. Draine B T, Flatau P J, Discrete-dipole approximation for scattering calculations, J Opt Soc Am A, 11(1994)1491–1499.
  33. Balla N K, Yew E Y S, Sheppard C J R, So P T C, Coupled and uncoupled dipole models of nonlinear scattering, Opt Express, 20(2012)25834–25842.
  34. Balla N K, So P T C, Sheppard C J R, Second harmonic scattering from small particles using discrete dipole approximation, Opt Express, 18(2010)21603–21611.
  35. Balla N K, Rendón-Barraza C, Hoang L M, Karpinski P, Bermúdez-Ureña E, Brasselet S, Polarized nonlinear nanoscopy of metal nanostructures, ACS Photon, 4(2017)292–301.
  36. Chu S W, Chen S Y, Chern G W, Tsai T H, Chen Y C, Lin B L, Sun C K, Studies of χ(2)(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy, Biophys J, 86(2004)3914–3922.
  37. Roude D, Recher G, Bellanger J J, Lavault M T, Schaub E, Tiaho F, Modeling of supramolecular centrosymmetry effect on sarcomeric SHG intensity pattern of skeletal muscles, Biophys J. 101(2011)494–503.
  38. Stoller P, Kim B-M, Rubenchik A M, Reiser K M, Da Silva L B, Polarization-dependent optical second-harmonic imaging of a rat-tail tendon, J Biomed Opt, 7(2002)205–214.
  39. Yew E, Sheppard C, Effects of axial field components on second harmonic generation microscopy, Opt Express, 14(2006)1167–1174.
  40. Gusachenko I, Tran V, Houssen Y G, Allain J M, Schanne-Klein M C, Polarization-resolved second-harmonic generation in tendon upon mechanical stretching, Biophys J. 102(2012)2220–2229.
  41. Yew E Y S, Sheppard C J R, Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams, Opt Commun, 275(2007)453–457.
  42. Mazumder N, Qiu J, Foreman M R, Romero C M, Hu C-W, Tsai H-R, Tӧrӧk P, Kao F-J, Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter, Opt Express, 20(2012)14090–14099.
  43. Mazumder N, Qiu J, Foreman M R, Romero C M, Török P, Kao F-J, Stokes vector based polarization resolved second harmonic microscopy of starch granules, Biomed Opt Express, 4(2013)538–547.
  44. Mazumder N, Hu C W, Qiu J, Foreman M R, Romero C M, Török P, Kao F J, Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy, Methods, 66(2014)237–245.
  45. Samim M, Krouglov S, Barzda V, Double Stokes Mueller polarimetry of second-harmonic generation in ordered molecular structures, J Opt Soc Am B, 32(2015)451-461.
  46. Cisek R, Tokarz D, Krouglov S, Steup M, Emes M J, Tetlow I J, Barzda V, Second harmonic generation mediated by aligned water in starch granules, J Phys Chem B, 118(2014)14785–14794.
  47. Mazumder N, Xiang L Y, Qiu J, Kao F J, Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy, Sci Rep, 7(2017)1–9.
  48. Walker M J, Matrix calculus and the Stokes parameters of polarized radiation, Am J Phys, 22(1954)170–174.
  49. Ghosh N, Wood M F G, Vitkin I A, Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues, Opt Commun, 283(2010)1200–1208.
  50. Mazumder N, Yun-Xiang L, Qiu J, Kao F J, Revealing molecular structure of starch with Stokes-vector based second harmonic generation microscopy, J Opt, 47(2018)40–46.
  51. Mazumder N, Qiu J, Kao F J, Diaspro A, Mueller matrix signature in advanced fluorescence microscopy imaging, J Opt (IOP), 19(2017)025301; doi.org/10.1088/2040-8986/aa5114.
  52. Whistler R L, Bemiller J N, Paschall E F, (eds), Starch: Chemistry and Technology, (Elsevier), 1984.
  53. Psilodimitrakopoulos S, Amat-Roldan I, Loza-Alvarez P, Artigas D, Effect of molecular organization on the image histograms of polarization SHG microscopy, Biomed Opt Express, 3(2012)2681-2693.
  54. Wang M, Reiser K M, Knoesen A, Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies, J Opt Soc Am A, 24(2007)3573-3586.
  55. Han C-Y, Du C-Y, Chen D-F, Evaluation of structural and molecular variation of starch granules during the gelatinization process by using the rapid Mueller matrix imaging polarimetry system, Opt Express, 26(2018)15851–15866.