Asian Journal of Physics Vol 31, No 7 (2022) 739

Hyperspectral imaging for skin cancer and blood disorders diagnosis

Meritxell Vilaseca1, Francisco J Burgos-Fernández1, Laura Rey-Barroso1, Mónica Roldán2,5,
Susanna Gassiot3,5, Edurne Sarrate3,5, Ignacio Isola3,5 and Anna Ruiz Llobet4
1Centre for Sensors, Instruments and Systems Development, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 11, 08222, Terrassa, Barcelona, Spain
2Unitat de Microscòpia Confocal i Imatge Cel•lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain.
3Laboratory of Hematology, Service of Laboratory Diagnosis / Institute of Pediatric Research, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain
4Service of Pediatric Hematology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain 5Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain

Dedicated to Prof Maria J Yzuel

Hyperspectral imaging is a novel technology for acquiring an image at a large number of wavelengths, thus allowing the study of spectral and spatial details of a sample under analysis. This technology has emerged as a promising imaging modality to be used as a diagnostic tool in several medical applications where spectral information is relevant. In this paper, we outline our most recent achievements in this field. Firstly, hyperspectral imaging systems developed to improve non-invasive diagnosis of skin cancer, consisting of digital silicon and InGaAs cameras and light emitting diodes, are described. Secondly, we present our latest study using hyperspectral technology together with confocal microscopy to improve the diagnosis of blood diseases, in particular, hemoglobinopathies such as thalassemia and cell membrane diseases such as hereditary spherocytosis. Finally, new insights on these topics are discussed. © Anita Publications. All rights reserved.
Keywords: Hyperspectral imaging, Confocal microscopy, Skin cancer, Hemoglobinopathies, Membrane protein defects.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Lu G, Fei B, Medical hyperspectral imaging: a review, J Biomed Opt, 19(2014)010901;

  2. Li Q, He X, Wang Y, Liu H, Xu D, Guo F, Review of spectral imaging technology in biomedical engineering: Achievements and challenges, J Biomed Opt, 18 (2013)100901;
  3. Diebele I, Kuzmina I, Lihachev A, Kapostinsh J, Derjabo A, Valeine L, Spigulis J, Clinical evaluation of melanomas and common nevi by spectral imaging, Biomed Opt Express, 3(2012)467–472.
  4. Everdell N L, Styles I B, Calcagni A, Gibson J, Hebden J, Claridge E, Multispectral imaging of the ocular fundus using light emitting diode illumination, Rev Sci Instrum, 81, 093706 (2020);
  5. Firn K A, Khoobehi B, Novel, noninvasive multispectral snapshot imaging system to measure and map the distribution of human retinal vessel and tissue hemoglobin oxygen saturation, Int J Ophthalmic Res, 1(2015)48–58.
  6. Hagen N, Dereniak E L, Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution, Appl Opt, 47(2008)F85–F95.
  7. Cao Q, Zhegalova N G, Wang S T, Akers W J, Berezin M Y, Multispectral imaging in the extended near-infrared window based on endogenous chromophores, J Biomed Opt, 18, 101318 (2013);
  8. Mourant J R, Fuselier T, Boyer J, Johnson T M, Bigio I J, Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms, Appl Opt, 36(1997)949–957.
  9. Godoy S E, Ramirez D A, Myers S A, von Winckel G, Krishna S, Berwick M, Padilla S, Sen P, Krishna S, Dynamic infrared imaging for skin cancer screening, Infrared Phys Technol, 70(2015)147–152.
  10. Gadeliya Goodson A, Grossman D, Strategies for early melanoma detection: Approaches to the patient with nevi, J Am Acad Dermatol, 60(2019)719–735.
  11. Guy G P, Ekwueme D U, Tangka F K, Richardson L C, Melanoma treatment costs: a systematic review of the literature, Am J Prev Med, 43(2012)537–545.
  12. Rey-Barroso L, Peña-Gutiérrez S, Yáñez C, Burgos-Fernández F J, Vilaseca M, Royo S,Optical technologies for the improvement of skin cancer diagnosis: a Review, Sensors, 21(2021)252;
  13. Delpueyo X, Vilaseca M, Royo S, Ares M, Rey-Barroso L, Sanabria F, Puig S, Malvehy J, Pellacani J, Noguero F, Solomita G, Bosch T. Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: A pilot study, J Biomed Opt, 22, 065006 (2017); doi.10.1117/1.JBO.22.7.079801.
  14. Rey-Barroso L, Burgos-Fernández FJ, Delpueyo X, Ares M, Royo S, Malvehy J, Puig S, Vilaseca M, Visible and extended near-infrared multispectral imaging for skin cancer diagnosis, Sensors (Basel), 18(2018) 1441;
  15. Kohne E, Hemoglobinopathies: clinical manifestations, diagnosis, and treatment, Dtsch Arztebl Int, 108(2011) 532–540.
  16. Desouky O S, Selim N S, El-Bakrawy E M, El-Marakby S M, Biophysical characterization of thalassemic red blood cells, Cell Biochem Biophys, 55(2009)45–53.
  17. Rey-Barroso L, Roldán M, Burgos-Fernández F J, Gassiot S, Ruiz Llobet A, Isola I, Vilaseca M, Spectroscopic evaluation of red blood cells of thalassemia patients with confocal microscopy: a pilot study, Sensors, 20 (2020) 4039;
  18. Devanesan S, Saleh A M, Ravikumar M, Perinbam K, Prasad S, Abbas HA-S, Palled SR, Jeyaprakash K, Masilamani V, Prasad S, Abbas H A-S, Palled S R,  Jeyaprakash K, Masilamani V, Fluorescence spectral classification of iron deficiency anemia and thalassemia, J Biomed Opt, 19(2014)027008;
  19. Eber S, Lux S, Hereditary Spherocytosis – Defects in proteins that connect the membrane skeleton to the lipid bilayer, Semin Hematol, 41(2004)118–141.
  20. Langley R G, Walsh N, Sutherland A E, Propperova I, Delaney L, Morris S F, Gallant C, The diagnostic accuracy of in vivo confocal scanning laser microscopy compared to dermoscopy of benign and malignant melanocytic lesions: A prospective study, Arch Dermatol, 215(2007)365–372.
  21. Rey-Barroso L, Burgos-Fernández F J, Ares M, Royo S, Puig S, Malvehy J, Pellacani G, Espinar D, Sicilia N, Vilaseca Ricart M, Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning, Biomed Opt Express, 10(2019)3404–3409.
  22. Khairy K, Foo J, Howard J, Shapes of red blood cells: comparison of 3D confocal images with the Bilayer-Couple model, Cell Mol Bioeng, 1(2008)173–181.
  23. Magalhaes C, Mendes J, Vardasca R, The role of AI classifiers in skin cancer images, Skin Res Technol, 25(2019)750–757.